Integral Metapletic Modular Categories

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren In collaboration with Sasha Poltoratski

Under the direction of Dr. Eric Rowell
With advice from Adam Deaton, Paul Gustafson, Qing Zhang

NSF DM 1757872
July 16, 2018
2018 Texas A\&M REU Miniconference

Outline

Outline

(1) Background Information

- What is Topological Quantum Computation?
- What are Integral Metapletic Modular Categories?

Outline

(1) Background Information

- What is Topological Quantum Computation?
- What are Integral Metapletic Modular Categories?
(2) Group Theoreticity of Integral Metapletic Modular Categories

Outline

(1) Background Information

- What is Topological Quantum Computation?
- What are Integral Metapletic Modular Categories?
(2) Group Theoreticity of Integral Metapletic Modular Categories Break with questions!

Outline

(1) Background Information

- What is Topological Quantum Computation?
- What are Integral Metapletic Modular Categories?
(2) Group Theoreticity of Integral Metapletic Modular Categories Break with questions!
(3) If Integral Metapletic Modular Categories are Group Theoretical, then what group do they come from?

Outline

(1) Background Information

- What is Topological Quantum Computation?
- What are Integral Metapletic Modular Categories?
(2) Group Theoreticity of Integral Metapletic Modular Categories Break with questions!
(3) If Integral Metapletic Modular Categories are Group Theoretical, then what group do they come from?
(9) Link Invariants associated with these Categories

What is a Quantum Computer?

What is a Quantum Computer?

- Normal computers use physical effects to make computations

What is a Quantum Computer?

- Normal computers use physical effects to make computations
- Quantum computers use quantum physical effects to make computations

What is a Quantum Computer?

- Normal computers use physical effects to make computations
- Quantum computers use quantum physical effects to make computations
- Effects such as superposition, entanglement

What is a Quantum Computer?

- Normal computers use physical effects to make computations
- Quantum computers use quantum physical effects to make computations
- Effects such as superposition, entanglement
- Potential for exponential speedup compared to classical computers on certain applications
- Challenges: Required conditions, decoherence

Topological Quantum Computing

- Computations done by braiding quantum particles
- Computations done by braiding quantum particles
- Particle types: bosons, fermions, anyons in 2 dimensions
- We can take a measurement after braiding, which approximates some link invariant on the braid formed
- Computations done by braiding quantum particles
- Particle types: bosons, fermions, anyons in 2 dimensions
- We can take a measurement after braiding, which approximates some link invariant on the braid formed
- Braiding is topological - resistant to decoherence

Topological Quantum Computing

- Computations done by braiding quantum particles
- Particle types: bosons, fermions, anyons in 2 dimensions
- We can take a measurement after braiding, which approximates some link invariant on the braid formed
- Braiding is topological - resistant to decoherence
- Important question: how much information does braiding give us?

Topological Quantum Computing

- Computations done by braiding quantum particles
- Particle types: bosons, fermions, anyons in 2 dimensions
- We can take a measurement after braiding, which approximates some link invariant on the braid formed
- Braiding is topological - resistant to decoherence
- Important question: how much information does braiding give us?
- Anyon systems modeled using modular categories

Modular Categories

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects
- Anyon fusion: tensor product \otimes

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects
- Anyon fusion: tensor product \otimes
- Antiparticles: duality $\left(X \otimes X^{*} \cong 1 \bigoplus \ldots\right)$

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects
- Anyon fusion: tensor product \otimes
- Antiparticles: duality $\left(X \otimes X^{*} \cong 1 \bigoplus \ldots\right)$
- Braiding: Isomorphism $c_{x, y}$ between $X \otimes Y$ and $Y \otimes X$

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects
- Anyon fusion: tensor product \otimes
- Antiparticles: duality $\left(X \otimes X^{*} \cong 1 \bigoplus \ldots\right)$
- Braiding: Isomorphism $c_{x, y}$ between $X \otimes Y$ and $Y \otimes X$
- Twist: Isomorphism between X_{i} and itself, given by θ_{i}

Modular Categories

Definition

A Modular Category is a ribbon fusion category with an invertible S matrix.

- Objects are anyons or superpositions of anyons: direct sum \bigoplus
- Finitely many anyon types: simple objects
- Anyon fusion: tensor product \otimes
- Antiparticles: duality $\left(X \otimes X^{*} \cong 1 \bigoplus \ldots\right)$
- Braiding: Isomorphism $c_{x, y}$ between $X \otimes Y$ and $Y \otimes X$
- Twist: Isomorphism between X_{i} and itself, given by θ_{i}

Modular Data

Modular Data

- Any premodular (ribbon fusion) category has an S and T matrix associated with it

Modular Data

- Any premodular (ribbon fusion) category has an S and T matrix associated with it
- S captures braiding statistics:

$$
S_{i j}=\operatorname{tr}\left(c_{X_{i}, X_{j}} \circ c_{X_{i}, X_{j}}\right)
$$

Modular Data

- Any premodular (ribbon fusion) category has an S and T matrix associated with it
- S captures braiding statistics:

$$
S_{i j}=\operatorname{tr}\left(c_{X_{i}, X_{j}} \circ c_{X_{i}, X_{j}}\right)
$$

- T matrix captures twists: diagonal, $T_{i, i}=\theta_{X_{i}}$

Modular Data

- Any premodular (ribbon fusion) category has an S and T matrix associated with it
- S captures braiding statistics:

$$
S_{i j}=\operatorname{tr}\left(c_{X_{i}, X_{j}} \circ c_{X_{i}, X_{j}}\right)
$$

- T matrix captures twists: diagonal, $T_{i, i}=\theta_{X_{i}}$
- Premodular categories with invertible S matrices are called modular categories

Modular Data

- Any premodular (ribbon fusion) category has an S and T matrix associated with it
- S captures braiding statistics:

$$
S_{i j}=\operatorname{tr}\left(c_{X_{i}, X_{j}} \circ c_{X_{i}, X_{j}}\right)
$$

- T matrix captures twists: diagonal, $T_{i, i}=\theta_{X_{i}}$
- Premodular categories with invertible S matrices are called modular categories
- This corresponds to all anyon types being observable
- A modular category has a representation of the braid group associated with it
- A modular category has a representation of the braid group associated with it
- This representation tells us how much information about the braiding is preserved
- A modular category has a representation of the braid group associated with it
- This representation tells us how much information about the braiding is preserved
- No representation is faithful - how good can we get?
- A modular category has a representation of the braid group associated with it
- This representation tells us how much information about the braiding is preserved
- No representation is faithful - how good can we get?

> Conjecture (Naidu, Rowell)
> A category corresponds to a braid group representation of finite image (Property F) if and only if it is weakly integral (all objects have dimension d such that $d^{2} \in \mathbb{Z}$)

To the Point

- A modular category has a representation of the braid group associated with it
- This representation tells us how much information about the braiding is preserved
- No representation is faithful - how good can we get?

> Conjecture (Naidu, Rowell)
> A category corresponds to a braid group representation of finite image (Property F) if and only if it is weakly integral (all objects have dimension d such that $d^{2} \in \mathbb{Z}$)

Our work focuses on verifying the property F conjecture for integral metaplectic modular categories

Integral Metaplectic Modular Categories

Integral Metaplectic Modular Categories

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)
All integral metaplectic modular categories have property F

Integral Metaplectic Modular Categories

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)
All integral metaplectic modular categories have property F

- We showed that they are group theoretical, which implies property F

Integral Metaplectic Modular Categories

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)
All integral metaplectic modular categories have property F

- We showed that they are group theoretical, which implies property F
- group theoreticity means the category "comes from" a finite group

Integral Metaplectic Modular Categories

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

All integral metaplectic modular categories have property F

- We showed that they are group theoretical, which implies property F
- group theoreticity means the category "comes from" a finite group
- This means that using these anyon systems, we can't create a universal quantum computer using braiding alone

How Will We Prove Group Theoreticity?

How Will We Prove Group Theoreticity?

Definition

Let $\mathrm{X}, \mathrm{Y} \in \mathcal{C}$ Then, X centralizes Y if and only if their braiding is trivial.

How Will We Prove Group Theoreticity?

Definition

Let $\mathrm{X}, \mathrm{Y} \in \mathcal{C}$ Then, X centralizes Y if and only if their braiding is trivial.

How Will We Prove Group Theoreticity?

Definition

Let $\mathrm{X}, \mathrm{Y} \in \mathcal{C}$ Then, X centralizes Y if and only if their braiding is trivial.

Definition

For any subcategory \mathcal{L} of a braided fusion category \mathcal{C} the centralizer of \mathcal{L} denoted by $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ is the subcategory consisting of objects $Y \in \mathcal{C}$ that centralize all objects $X \in \mathcal{L}$

How will we Prove Group Theoreticity?

Definition

Let $X \in \mathcal{C}$ then, its dual X^{*} is the object in \mathcal{C} such that $X \otimes X^{*}$ produces the identity in \mathcal{C}.

How will we Prove Group Theoreticity?

Definition

Let $X \in \mathcal{C}$ then, its dual X^{*} is the object in \mathcal{C} such that $X \otimes X^{*}$ produces the identity in \mathcal{C}.

Definition

Let $\mathcal{L} \subset \mathcal{C}$. Then, the adjoint subcategory $\mathcal{L}_{\text {ad }}$ is the smallest fusion subcategory of \mathcal{C} that contains $X \otimes X^{*}$ for each simple object $X \in \mathcal{L}$.

How will we Prove Group Theoreticity?

Definition

Let $X \in \mathcal{C}$ then, its dual X^{*} is the object in \mathcal{C} such that $X \otimes X^{*}$ produces the identity in \mathcal{C}.

Definition

Let $\mathcal{L} \subset \mathcal{C}$. Then, the adjoint subcategory $\mathcal{L}_{\text {ad }}$ is the smallest fusion subcategory of \mathcal{C} that contains $X \otimes X^{*}$ for each simple object $X \in \mathcal{L}$.

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory \mathcal{L}

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory \mathcal{L}
- Prove that \mathcal{L} is symmetric

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory \mathcal{L}
- Prove that \mathcal{L} is symmetric
- Show $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d} \subset \mathcal{L}$

How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory \mathcal{L}
- Prove that \mathcal{L} is symmetric
- Show $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d} \subset \mathcal{L}$

Case 1: Integral Metapletic Modular Categories with the same Fusion Rules as $\mathrm{SO}(\mathrm{N})_{2}$, N Odd

Case 1: Integral Metapletic Modular Categories with the same Fusion Rules as $\mathrm{SO}(\mathrm{N})_{2}, \mathrm{~N}$ Odd

Definition

The fusion rules of a category \mathcal{C} describe the result of taking the tensor product of any two simple objects in \mathcal{C}.

Case 1: Integral Metapletic Modular Categories with the same Fusion Rules as $\mathrm{SO}(\mathrm{N})_{2}, \mathrm{~N}$ Odd

Definition

The fusion rules of a category \mathcal{C} describe the result of taking the tensor product of any two simple objects in \mathcal{C}.

The unitary modular category $\mathrm{SO}(\mathrm{N})_{2}$ for odd $\mathrm{N}>1$ has two simple objects, X_{1}, X_{2} of dimension \sqrt{N}, two simple objects $1, Z$ of dimension 1 , and $\frac{N-1}{2}$ objects $Y_{i}, i=1, \ldots, \frac{N-1}{2}$ of dimension 2 .

Case 1: Integral Metapletic Modular Categories with the same Fusion Rules as $S O(N)_{2}$, N Odd

Definition

The fusion rules of a category \mathcal{C} describe the result of taking the tensor product of any two simple objects in \mathcal{C}.

The unitary modular category $\mathrm{SO}(\mathrm{N})_{2}$ for odd $\mathrm{N}>1$ has two simple objects, X_{1}, X_{2} of dimension \sqrt{N}, two simple objects $1, Z$ of dimension 1, and $\frac{N-1}{2}$ objects $Y_{i}, i=1, \ldots, \frac{N-1}{2}$ of dimension 2.
The fusion rules are:

1. $Z \otimes Y_{i} \cong Y_{i}, Z \otimes X_{i t} \cong X_{i}(\bmod 2), Z^{\otimes 2} \cong 1$
2. $X_{i}^{\otimes 2} \cong 1 \oplus \bigoplus_{i} Y_{i}$,
3. $X_{1} \otimes X_{2} \cong Z \oplus \bigoplus_{i} Y_{i}$,
4. $Y_{i} \otimes Y_{j} \cong Y_{\min \{i+j, N-i-j\}} \oplus Y_{|i-j|}$, for $i \neq j$ and

$$
Y_{i}^{\otimes 2}=\mathbf{1} \oplus Z \oplus Y_{\min \{2 i, N-2 i\}}
$$

A Proposed Subcategory \mathcal{L}

A Proposed Subcategory \mathcal{L}

Recall, $\mathcal{C}=\left\{\mathbf{1}, Z, Y_{1}, Y_{2}, \ldots, Y_{i}, X_{1}, X_{2}\right\}$ for $i=1, \ldots, \frac{N-1}{2}$

A Proposed Subcategory \mathcal{L}

Recall, $\mathcal{C}=\left\{\mathbf{1}, Z, Y_{1}, Y_{2}, \ldots, Y_{i}, X_{1}, X_{2}\right\}$ for $i=1, \ldots, \frac{N-1}{2}$

Lemma

Every integral metaplectic modular category \mathcal{C} with the fusion rules of $\mathrm{SO}(\mathrm{N})_{2}$ for odd N has a symmetric subcategory \mathcal{L} generated by $1, Z$ and $Y_{i t}$ where $t=\sqrt{N}$ and $1 \leq i \leq \frac{t-1}{2}$.

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.
By our fusion rules, we know for $Y_{i t}, Y_{j t} \in \mathcal{L}, i \neq j$

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.
By our fusion rules, we know for $Y_{i t}, Y_{j t} \in \mathcal{L}, i \neq j$

- $\mathbf{1} \otimes Y_{i t} \cong Y_{i t}$ and $Z \otimes Y_{i t} \cong Y_{i t}$

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.
By our fusion rules, we know for $Y_{i t}, Y_{j t} \in \mathcal{L}, i \neq j$

- $\mathbf{1} \otimes Y_{i t} \cong Y_{i t}$ and $Z \otimes Y_{i t} \cong Y_{i t}$
- $Y_{i t}^{\otimes 2} \cong \mathbf{1} \oplus Z \oplus Y_{\min \{(2 i) t,(t-2 i) t\}}$
- Case 1: $(2 i) t<(t-2 i) t$
- Case 2: $(2 i) t \geq(t-2 i) t$

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.
By our fusion rules, we know for $Y_{i t}, Y_{j t} \in \mathcal{L}, i \neq j$

- $\mathbf{1} \otimes Y_{i t} \cong Y_{i t}$ and $Z \otimes Y_{i t} \cong Y_{i t}$
- $Y_{i t}^{\otimes 2} \cong \mathbf{1} \oplus Z \oplus Y_{\min \{(2 i) t,(t-2 i) t\}}$
- Case 1: $(2 i) t<(t-2 i) t$
- Case 2: $(2 i) t \geq(t-2 i) t$
- $Y_{i t} \otimes Y_{j t} \cong Y_{\min \{(i+j) t,(t-i-j) t\}} \oplus Y_{|(i-j) t|}$
- Case 1: $(i+j) t<(t-i-j) t$
- Case 2: $(i+j) t \geq(t-i-j) t$

Proof that $\mathcal{L}=\left\{\mathbf{1}, Z, Y_{i t}\right\}$ is a fusion subcategory of \mathcal{C}

We need to show that \mathcal{L} is closed under the tensor product.
By our fusion rules, we know for $Y_{i t}, Y_{j t} \in \mathcal{L}, i \neq j$

- $\mathbf{1} \otimes Y_{i t} \cong Y_{i t}$ and $Z \otimes Y_{i t} \cong Y_{i t}$
- $Y_{i t}^{\otimes 2} \cong \mathbf{1} \oplus Z \oplus Y_{\min \{(2 i) t,(t-2 i) t\}}$
- Case 1: $(2 i) t<(t-2 i) t$
- Case 2: $(2 i) t \geq(t-2 i) t$
- $Y_{i t} \otimes Y_{j t} \cong Y_{\min \{(i+j) t,(t-i-j) t\}} \oplus Y_{|(i-j) t|}$
- Case 1: $(i+j) t<(t-i-j) t$
- Case 2: $(i+j) t \geq(t-i-j) t$

Therefore, \mathcal{L} is a fusion subcategory of \mathcal{C}

Proof that \mathcal{L} is symmetric

Proof that \mathcal{L} is symmetric

Proposition (Müger)
Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proof that \mathcal{L} is symmetric

Proposition (Müger)
Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

We will show an even stronger statement: $\mathcal{L}=\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$.

Proof that \mathcal{L} is symmetric

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

We will show an even stronger statement: $\mathcal{L}=\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$.

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

Proof that \mathcal{L} is symmetric

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

We will show an even stronger statement: $\mathcal{L}=\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$.

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

- We know $\operatorname{dim}(\mathcal{C})=4 t^{2}$ and $\operatorname{dim}(\mathcal{L})=2 t$

Proof that \mathcal{L} is symmetric

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

We will show an even stronger statement: $\mathcal{L}=\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$.

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

- We know $\operatorname{dim}(\mathcal{C})=4 t^{2}$ and $\operatorname{dim}(\mathcal{L})=2 t$
- Thus, $2 t\left(\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=4 t^{2}\right.$ and $\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=2 t$.

Grading

Grading

Definition

a G-grading is a partitioning of a category \mathcal{D} such that the parts are indexed by elements of G and if $X \in \mathcal{D}_{g}, Y \in \mathcal{D}_{h}$ then $X \otimes Y \in \mathcal{D}_{g h}$

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Grading

Definition

a G-grading is a partitioning of a category \mathcal{D} such that the parts are indexed by elements of G and if $X \in \mathcal{D}_{g}, Y \in \mathcal{D}_{h}$ then $X \otimes Y \in \mathcal{D}_{g h}$

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Grading

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Grading

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Definition

The pointed subcategory $\mathcal{C}_{p t}$ is the subcategory of \mathcal{C} containing all of the objects of dimension 1 .

Grading

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Definition

The pointed subcategory $\mathcal{C}_{p t}$ is the subcategory of \mathcal{C} containing all of the objects of dimension 1 .

Theorem (Gelaki, Nikschych)

$$
\mathcal{Z}_{\mathcal{C}}\left(C_{p t}\right)=\mathcal{C}_{\mathbf{1}}
$$

Grading

There is a faithful \mathbb{Z}_{2} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, Z, Y_{i}\right\} \\
\mathcal{C}_{Z} & =\left\{X_{1}, X_{2}\right\}
\end{aligned}
$$

Definition

The pointed subcategory $\mathcal{C}_{p t}$ is the subcategory of \mathcal{C} containing all of the objects of dimension 1 .

Theorem (Gelaki, Nikschych)

$$
\mathcal{Z}_{\mathcal{C}}\left(C_{p t}\right)=\mathcal{C}_{\mathbf{1}}
$$

As $C_{p t} \subset \mathcal{L}$, this means $\mathcal{Z}_{\mathcal{C}}(\mathcal{L}) \subset \mathcal{C}_{1}$ and we only need to examine \mathcal{C}_{1}.

De-equivariantization

De-equivariantization

De-equivariantization...

De-equivariantization

De-equivariantization...

- is like quotienting in a braided fusion category

De-equivariantization

De-equivariantization...

- is like quotienting in a braided fusion category
- preserves the fusion rules, i.e., if $X \otimes Y=A \oplus B$ then $F[X] \otimes F[Y]=F[A] \oplus F[B]$

Proof that \mathcal{L} is symmetric (continued)

We take the de-equivariantization of \mathcal{C} by $\langle Z\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$.

Proof that \mathcal{L} is symmetric (continued)

We take the de-equivariantization of \mathcal{C} by $\langle Z\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$.
The de-equivariantixation functor:

$$
\begin{gathered}
\mathbf{1} \rightsquigarrow 0 \\
\mathrm{Z} \rightsquigarrow 0 \\
\mathrm{Y}_{i} \rightsquigarrow i \oplus-i \in \mathbb{Z}_{t^{2}}
\end{gathered}
$$

The subcategory tensor generated by Y_{i} corresponds to $\langle i\rangle \in \mathbb{Z}_{t^{2}}$.

Proof that \mathcal{L} is symmetric (continued)

We take the de-equivariantization of \mathcal{C} by $\langle Z\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$.
The de-equivariantixation functor:

$$
\begin{gathered}
\mathbf{1} \rightsquigarrow 0 \\
\mathrm{Z} \rightsquigarrow 0 \\
\mathrm{Y}_{\mathrm{i}} \rightsquigarrow i \oplus-i \in \mathbb{Z}_{t^{2}}
\end{gathered}
$$

The subcategory tensor generated by Y_{i} corresponds to $\langle i\rangle \in \mathbb{Z}_{t^{2}}$.
The trivial component of the de-equivariantization \mathcal{D}_{0} preserves braiding. \mathcal{D}_{0} is the image of \mathcal{C}_{1}-exactly what we need.

Proof that \mathcal{L} is symmetric (continued)

We know if $|\langle i\rangle|=t$, this corresponds to a subcategory of dimension $2 t$ containing exactly $\frac{t-1}{2}$ distinct $Y_{i}, \mathbf{1}$ and Z.

Proof that \mathcal{L} is symmetric (continued)

We know if $|\langle i\rangle|=t$, this corresponds to a subcategory of dimension $2 t$ containing exactly $\frac{t-1}{2}$ distinct $Y_{i}, \mathbf{1}$ and Z.

- Suppose $i=t,|\langle i\rangle|=t$

Proof that \mathcal{L} is symmetric (continued)

We know if $|\langle i\rangle|=t$, this corresponds to a subcategory of dimension $2 t$ containing exactly $\frac{t-1}{2}$ distinct $Y_{i}, \mathbf{1}$ and Z.

- Suppose $i=t,|\langle i\rangle|=t$

Therefore, $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ must be the subcategory tensor generated by Y_{t} which is \mathcal{L}.

Proof that \mathcal{L} is symmetric (continued)

We know if $|\langle i\rangle|=t$, this corresponds to a subcategory of dimension $2 t$ containing exactly $\frac{t-1}{2}$ distinct $Y_{i}, \mathbf{1}$ and Z.

- Suppose $i=t,|\langle i\rangle|=t$

Therefore, $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ must be the subcategory tensor generated by Y_{t} which is \mathcal{L}.

- \mathcal{L} is equal to its centralizer, it is symmetric.

RECAP: How will we Prove Group Theoreticity?

RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory $\mathcal{L} \checkmark$

RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory $\mathcal{L} \checkmark$
- Prove that \mathcal{L} is symmetric \checkmark

RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

What we need to do:

- Find a subcategory $\mathcal{L} \checkmark$
- Prove that \mathcal{L} is symmetric \checkmark
- Show $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d} \subset \mathcal{L}$

Proof of Group Theoreticity

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

In the previous proof we saw that $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\mathcal{L}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

In the previous proof we saw that $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\mathcal{L}$. Therefore, $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d}=\mathcal{L}_{\text {ad }}$, so clearly $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d} \subset \mathcal{L}$ and \mathcal{C} is group theoretical.

- Find a subcategory \mathcal{L}
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find the dimension of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find the dimension of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- Take the de-equivariantization by a boson and show $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ is in \mathcal{D}_{0}
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find the dimension of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- Take the de-equivariantization by a boson and show $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ is in \mathcal{D}_{0}
- Show that \mathcal{D}_{0} is cyclic and therefore only contains the image of one subcategory of the correct size
- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find the dimension of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- Take the de-equivariantization by a boson and show $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ is in \mathcal{D}_{0}
- Show that \mathcal{D}_{0} is cyclic and therefore only contains the image of one subcategory of the correct size
- Show this subcategory $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})=\mathcal{L}$

Template for Proof

- Find a subcategory \mathcal{L}
- Relabel fusion rules so this is a similar problem to odd case
- Prove that \mathcal{L} is symmetric
- Find the dimension of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- Take the de-equivariantization by a boson and show $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$ is in \mathcal{D}_{0}
- Show that \mathcal{D}_{0} is cyclic and therefore only contains the image of one subcategory of the correct size
- Show this subcategory $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})=\mathcal{L}$
- Show $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $k+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $\mathrm{k}+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

We have two cases to consider:

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $\mathrm{k}+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

We have two cases to consider:

1. $N \equiv 2(\bmod 4), N$ is twice an odd square

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $k+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

We have two cases to consider:

1. $N \equiv 2(\bmod 4), N$ is twice an odd square ex. $S O(18)_{2}$
$\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, X_{1}, X_{2}, X_{3}, X_{4}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $\mathrm{k}+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

We have two cases to consider:

1. $N \equiv 2(\bmod 4), N$ is twice an odd square ex. $S O(18)_{2}$
$\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, X_{1}, X_{2}, X_{3}, X_{4}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
2. $N \equiv 0(\bmod 4), N$ is twice an even square

Case 2: Integral metapletic modular categories with the same fusion rules as $S O(N)_{2}, \mathrm{~N}$ even

N is even, so let $k=N / 2$.
Then, we have $\mathrm{k}+7$ total simple objects. We have 4 simple objects of dimension $1, k-1$ simple objects of dimension 2 , and 4 simple objects of dimension $\sqrt{k}=\ell$

We have two cases to consider:

1. $N \equiv 2(\bmod 4), N$ is twice an odd square ex. $S O(18)_{2}$
$\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, X_{1}, X_{2}, X_{3}, X_{4}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
2. $N \equiv 0(\bmod 4), N$ is twice an even square
ex. $S O(8)_{2}$
$\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{0}, Y_{1}, X_{0}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$

Case a: $N \equiv 2(\bmod 4)$

Case a: $N \equiv 2(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, \ldots Y_{\frac{k-1}{2}}, X_{1}, \ldots X_{\frac{k-1}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$

Case a: $N \equiv 2(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, \ldots Y_{\frac{k-1}{2}}, X_{1}, \ldots X_{\frac{k-1}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
The fusion rules are:

Case a: $N \equiv 2(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{1}, \ldots Y_{\frac{k-1}{2}}, X_{1}, \ldots X_{\frac{k-1}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
The fusion rules are:

- $g \otimes X_{a} \simeq Y_{\frac{k-1-a}{2}-a}$, and $g^{2} \otimes X_{a} \simeq X_{a}$, and $g^{2} \otimes Y_{a} \simeq Y_{a}$ for $1 \leq a \leq(k-1) / 2$
- $X_{a} \otimes X_{a}=1 \oplus g^{2} \oplus X_{m i n\{2 a, k-2 a\}}$
- $X_{a} \otimes X_{b}=X_{\min \{a+b, k-a-b\}} \oplus X_{|a-b|}$ when $(a \neq b)$
- $V_{1} \otimes V_{1}=g \oplus \oplus_{a}^{\frac{k-1}{2}=1} Y_{a}$
- $g V_{1}=V_{3}, g V_{3}=V_{4}, g V_{2}=V_{1}, g V_{4}=V_{2}$ and $g^{3} V_{a}=V_{a}^{*}, V_{2}=V_{1}^{*}, V_{4}=V_{3}^{*}$

Relabeling fusion rules: $N \equiv 2(\bmod 4)$

Relabeling fusion rules: $N \equiv 2(\bmod 4)$

$\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2} \ldots Y_{\frac{k-1}{2}}, X_{1}, X_{2} \ldots \bar{X}_{\frac{k-1}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
Now, $\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, \ldots, Y_{k-1}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$

Relabeling fusion rules: $N \equiv 2(\bmod 4)$

$\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2} \ldots Y_{\frac{k-1}{2}}, X_{1}, X_{2} \ldots \bar{X}_{\frac{k-1}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
Now, $\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, \ldots, Y_{k-1}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
The fusion rules under our re-labeling:

Relabeling fusion rules: $N \equiv 2(\bmod 4)$

$\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2} \ldots Y_{\frac{k}{2}}, X_{1}, X_{2} \ldots X_{\frac{k}{2}}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$
Now, $\mathcal{C}=\left\{1, g, g^{2}, g^{3}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, \ldots, Y_{k-1}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$

The fusion rules under our re-labeling:

- $g \otimes Y_{i} \cong Y_{k-i}, g^{2} \otimes Y_{i} \cong Y_{i}$
- $Y_{i}^{\otimes 2} \cong \mathbf{1} \oplus g^{2} \oplus Y_{\min \{2 i, 2 k-2 i\}}$
- $Y_{i} \otimes Y_{j} \cong Y_{\min \{i+j, 2 k-i-j\}} \oplus Y_{|i-j|}$, when $i+j \neq k$
- $Y_{i} \otimes Y_{j} \cong g \oplus g^{3} \oplus Y_{|i-j|}$ when $i+j=k$.

A proposed symmetric subcategory
$\mathcal{L}=\left\{\mathbf{1}, g^{2}, Y_{2 n \prime}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-1}{2}$

A proposed symmetric subcategory
$\mathcal{L}=\left\{\mathbf{1}, g^{2}, Y_{2 n \prime}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-1}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

A proposed symmetric subcategory
$\mathcal{L}=\left\{\mathbf{1}, g^{2}, Y_{2 n \prime}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-1}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, g^{2}, Y_{2 n \prime}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-1}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

- We know $\operatorname{dim}(\mathcal{C})=8 \ell^{2}$ and $\operatorname{dim}(\mathcal{L})=2 \ell$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, g^{2}, Y_{2 n \prime}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-1}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$$
\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})
$$

- We know $\operatorname{dim}(\mathcal{C})=8 \ell^{2}$ and $\operatorname{dim}(\mathcal{L})=2 \ell$
- Thus, $2 \ell\left(\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=8 \ell^{2}\right.$ and $\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=4 \ell$.

Gradings

Gradings

There is a faithful \mathbb{Z}_{4} grading on \mathcal{C} :

Gradings

There is a faithful \mathbb{Z}_{4} grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, g^{2}, Y_{i}\right\} \text { where } i \text { is even } \\
\mathcal{C}_{g} & =\left\{V_{1}, V_{4}\right\} \\
\mathcal{C}_{g^{2}} & =\left\{g, g^{3}, Y_{i}\right\} \text { where } i \text { is odd } \\
\mathcal{C}_{g^{3}} & =\left\{V_{2}, V_{3}\right\}
\end{aligned}
$$

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for
- The subgroup $\langle\ell\rangle$ corresponds to the subcategory

$$
\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{m \ell}\right\}
$$

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for
- The subgroup $\langle\ell\rangle$ corresponds to the subcategory $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{m \ell}\right\}$
- $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})=\left\{\mathbf{1}, g^{2}, Y_{2 n \ell}\right\}, 1 \leq n \leq \frac{\ell-1}{2}=\mathcal{L}$

De-equivariantization of \mathcal{C} by $\left\langle g^{2}\right\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson g^{2} we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for
- The subgroup $\langle\ell\rangle$ corresponds to the subcategory $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{1, g, g^{2}, g^{3}, Y_{m \ell}\right\}$
- $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})=\left\{\mathbf{1}, g^{2}, Y_{2 n \ell}\right\}, 1 \leq n \leq \frac{\ell-1}{2}=\mathcal{L}$
- \mathcal{L} is symmetric

Proof of Group Theoreticity

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{m \ell}\right\}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{m \ell}\right\}$.
Applying our fusion rules, we see

$$
\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d}=\mathcal{L}
$$

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, g, g^{2}, g^{3}, Y_{m \ell}\right\}$.
Applying our fusion rules, we see

$$
\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d}=\mathcal{L}
$$

. So, clearly $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$ and \mathcal{C} is group theoretical.

Case b: $N \equiv 0(\bmod 4)$

Case b: $N \equiv 0(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{0}, \ldots Y_{\frac{k}{2}-1}, X_{1}, \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$

Case b: $N \equiv 0(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{0}, \ldots Y_{\frac{k}{2}-1}, X_{1}, \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$ The fusion rules are:

Case b: $N \equiv 0(\bmod 4)$

Recall, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{0}, \ldots Y_{\frac{k}{2}-1}, X_{1}, \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$ The fusion rules are:

- $f^{\otimes 2}=g^{\otimes 2}=1, f \otimes X_{i}=g \otimes X_{i}=X_{r-i-1}$ and
$f \otimes Y_{i}=g \otimes Y_{i}=Y_{r-i}$
- $g \otimes V_{1}=V_{2}, f \otimes V_{1}=V_{1}$ and $f \otimes W_{1}=W_{2}, g \otimes W_{1}=W_{1}$
- $V_{1}^{\otimes 2}=\mathbf{1} \oplus f \oplus \bigoplus_{i=0}^{r-1} X_{i}$
- $W_{1}^{\otimes 2}=\mathbf{1} \oplus g \oplus \bigoplus_{i=0}^{r-1} X_{i}$
- $W_{1} \otimes V_{1}=\bigoplus_{i=0}^{r} Y_{i}$

$$
\begin{aligned}
& X_{i} \otimes X_{j}= \begin{cases}X_{i+j+1} \oplus X_{j-i-1} & i<j \leq \frac{r-1}{2} \\
\mathbf{1} \oplus f g \oplus X_{2 i+1} & i=j i \frac{r-1}{2} \\
\mathbf{1} \oplus f \oplus g \oplus f g & \mathrm{i}=\mathrm{j}=\frac{r-1}{2}<r-1\end{cases} \\
& Y_{i} \otimes Y_{j}= \begin{cases}X_{i+j} \oplus X_{j-i-1} & i<j \leq \frac{r}{2} \\
\mathbf{1} \oplus f g \oplus X_{2 i} & \mathrm{i}=\mathrm{j}<\frac{r-1}{2} \\
\mathbf{1} \oplus f \oplus g \oplus f g & \mathrm{i}=\mathrm{j}=\frac{r}{2}\end{cases}
\end{aligned}
$$

Relabeling fusion rules: $N \equiv 0(\bmod 4)$

Relabeling fusion rules: $N \equiv 0(\bmod 4)$

$\mathcal{C}=\left\{1, f, g, f g, Y_{0}, Y_{1}, \ldots Y_{\frac{k}{2}-1}, X_{0}, X_{1} \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$
Now, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{1}, Y_{2}, Y_{3} \ldots Y_{k-1}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$

Relabeling fusion rules: $N \equiv 0(\bmod 4)$

$\mathcal{C}=\left\{1, f, g, f g, Y_{0}, Y_{1}, \ldots Y_{\frac{k}{2}-1}, X_{0}, X_{1} \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$
Now, $\mathcal{C}=\{1, f, g, f g, Y_{1}, \underbrace{}_{2}, Y_{3} \ldots Y_{k-1}, V_{1}, V_{2}, W_{1}, W_{2}\}$
The fusion rules under our re-labeling are:

Relabeling fusion rules: $N \equiv 0(\bmod 4)$

$$
\begin{aligned}
& \mathcal{C}=\left\{1, f, g, f g, Y_{0}, Y_{1}, \ldots Y_{\frac{k}{2}-1}, X_{0}, X_{1} \ldots X_{\frac{k}{2}-2}, V_{1}, V_{2}, W_{1}, W_{2}\right\} \\
& \text { Now, } \mathcal{C}=\{1, f, g, f g, Y_{1}, \underbrace{}_{2}, Y_{3} \ldots Y_{k-1}, V_{1}, V_{2}, W_{1}, W_{2}\}
\end{aligned}
$$

The fusion rules under our re-labeling are:

- $g \otimes Y_{i} \cong f \otimes Y_{i} \cong Y_{k-i}$
- $Y_{i}^{\otimes 2} \cong \mathbf{1} \oplus f \oplus g \oplus f g$, when $i=\frac{k}{2}$
- $Y_{i}^{\otimes 2} \cong \mathbf{1} \oplus f g \oplus Y_{\min \{2 i, 2 k-2 i\}}$, when $i \neq \frac{k}{2}$
- $Y_{i} \otimes Y_{j} \cong Y_{\min \{i+j, 2 k-i-j\}} \oplus Y_{|i-j|}$, when $i+j \neq k$
- $Y_{i} \otimes Y_{j} \cong g \oplus f \oplus Y_{|i-j|}$, when $i+j=k$.

Gradings

Gradings

There is a faithful $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ grading on \mathcal{C} :

Gradings

There is a faithful $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ grading on \mathcal{C} :

$$
\begin{aligned}
\mathcal{C}_{\mathbf{1}} & =\left\{\mathbf{1}, f, g, f g, Y_{i}\right\} \text { where } i \text { is even } \\
\mathcal{C}_{g} & =\left\{V_{1}, V_{2}\right\} \\
\mathcal{C}_{f} & =\left\{W_{1}, W_{2}\right\} \\
\mathcal{C}_{f g} & =\left\{Y_{i}\right\} \text { where } i \text { is odd } .
\end{aligned}
$$

A proposed symmetric subcategory
$\mathcal{L}=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-2}{2}$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-2}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-2}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-2}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})$

- We know $\operatorname{dim}(\mathcal{C})=8 \ell^{2}$ and $\operatorname{dim}(\mathcal{L})=2 \ell$

A proposed symmetric subcategory

$\mathcal{L}=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$ where $\ell=\sqrt{k}$ and $1 \leq n \leq \frac{\ell-2}{2}$

Proposition (Müger)

Let \mathcal{L} be a braided tensor category. \mathcal{L} is symmetric if and only it it coincides with its center $\mathcal{Z}_{\mathcal{L}}(\mathcal{L})$

Proposition (Müger)

$\operatorname{dim}(\mathcal{L}) \operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=\operatorname{dim}(\mathcal{C})$

- We know $\operatorname{dim}(\mathcal{C})=8 \ell^{2}$ and $\operatorname{dim}(\mathcal{L})=2 \ell$
- Thus, $2 \ell\left(\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=8 \ell^{2}\right.$ and $\operatorname{dim}\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)=4 \ell$.

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for
- The subgroup $\langle\ell\rangle$ corresponds to the subcategory

$$
\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}=\mathcal{L}
$$

De-equivariantization of \mathcal{C} by $\langle f g\rangle \cong \operatorname{Rep}\left(\mathbb{Z}_{2}\right)$

After de-equivariantizing by the boson $f g$ we can prove:

- The trivial component of this de-equivariantization \mathcal{D}_{0} contains the image of $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})$
- \mathcal{D}_{0} is cyclic and isomorphic to \mathbb{Z}_{N}
- The subgroup $\langle\ell\rangle$ is the image of the subcategory of size 4ℓ which is what we were looking for
- The subgroup $\langle\ell\rangle$ corresponds to the subcategory

$$
\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}=\mathcal{L}
$$

- \mathcal{L} is symmetric

Proof of Group Theoreticity

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)
 A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, f, g, f g, Y_{2 n \ell}\right\}$.

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, f, g\right.$, fg, $\left.Y_{2 n \ell}\right\}$.
Applying our fusion rules, we see

$$
\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d}=\mathcal{L}
$$

Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category \mathcal{C} is group theoretical if and only if it is integral and there is a symmetric subcategory \mathcal{L} such that $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{\text {ad }} \subset \mathcal{L}$.

We know $\mathcal{Z}_{\mathcal{C}}(\mathcal{L})=\left\{\mathbf{1}, f, g\right.$, fg, $\left.Y_{2 n \ell}\right\}$.
Applying our fusion rules, we see

$$
\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d}=\mathcal{L}
$$

. So, $\left(\mathcal{Z}_{\mathcal{C}}(\mathcal{L})\right)_{a d} \subset \mathcal{L}$ and \mathcal{C} is group theoretical.

Good News!!

Good News!!

ALL Integral Metapletic Modular Categories are Group Theoretical!

Good News!!

ALL Integral Metapletic Modular Categories are Group Theoretical!

Break!

Good News!!

ALL Integral Metapletic Modular Categories are Group Theoretical!

Break!

But first, any questions?

What Next After Group Theoreticity?

What Next After Group Theoreticity?

Definition

A category \mathfrak{C} is group theoretical if and only if its Drinfeld center $\mathcal{Z}(\mathcal{C})$ is equivalent to the representation category of the twisted double of some finite group:

$$
\mathcal{Z}(\mathcal{C}) \cong \operatorname{Rep} D^{\omega}(G)
$$

- What groups do these categories come from? Could we find some relationship between these categories and other categories coming from other groups?

What Next After Group Theoreticity?

Definition

A category \mathfrak{C} is group theoretical if and only if its Drinfeld center $\mathcal{Z}(\mathcal{C})$ is equivalent to the representation category of the twisted double of some finite group:

$$
\mathcal{Z}(\mathcal{C}) \cong \operatorname{Rep} D^{\omega}(G)
$$

- What groups do these categories come from? Could we find some relationship between these categories and other categories coming from other groups?
- Drinfeld Center: Makes a larger category out of some input category. In our case, this is equivalent to $\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }}$

What Next After Group Theoreticity?

Definition

A category \mathfrak{C} is group theoretical if and only if its Drinfeld center $\mathcal{Z}(\mathcal{C})$ is equivalent to the representation category of the twisted double of some finite group:

$$
\mathcal{Z}(\mathcal{C}) \cong \operatorname{Rep} D^{\omega}(G)
$$

- What groups do these categories come from? Could we find some relationship between these categories and other categories coming from other groups?
- Drinfeld Center: Makes a larger category out of some input category. In our case, this is equivalent to $\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }}$
- Twisted Double: Makes a Hopf algebra out of a group - like groups, these have representation categories

What Next After Group Theoreticity?

Definition

A category \mathfrak{C} is group theoretical if and only if its Drinfeld center $\mathcal{Z}(\mathcal{C})$ is equivalent to the representation category of the twisted double of some finite group:

$$
\mathcal{Z}(\mathcal{C}) \cong \operatorname{Rep} D^{\omega}(G)
$$

- What groups do these categories come from? Could we find some relationship between these categories and other categories coming from other groups?
- Drinfeld Center: Makes a larger category out of some input category. In our case, this is equivalent to $\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }}$
- Twisted Double: Makes a Hopf algebra out of a group - like groups, these have representation categories
- Twist ω is an associativity factor

GAP: Groups, Algorithms, Programming

GAP: Groups, Algorithms, Programming

- GAP is a computer program that makes computations related to groups and group theory

GAP: Groups, Algorithms, Programming

- GAP is a computer program that makes computations related to groups and group theory
- Examples:
- "G := SmallGroup([72,46])" : $C_{2} \times D_{6} \times D_{6}$
- "NormalSubgroups(G)" : returns all normal subgroups of a given group

GAP: Groups, Algorithms, Programming

- GAP is a computer program that makes computations related to groups and group theory
- Examples:
- "G := SmallGroup([72,46])" : $C_{2} \times D_{6} \times D_{6}$
- "NormalSubgroups(G)" : returns all normal subgroups of a given group
- GAP can also find the rank of the representation category of a twisted double of a group.

GAP: Groups, Algorithms, Programming

- GAP is a computer program that makes computations related to groups and group theory
- Examples:
- "G := SmallGroup([72,46])" : $C_{2} \times D_{6} \times D_{6}$
- "NormalSubgroups(G)" : returns all normal subgroups of a given group
- GAP can also find the rank of the representation category of a twisted double of a group.
- Dimension of a Drinfeld center $\mathcal{Z}(\mathcal{C})$ is $\operatorname{dim}(\mathcal{C})^{2}$, it's rank is $\operatorname{rank}(\mathcal{C})^{2}$.
- Dimension of a group's double $D^{\omega}(G)$ is $|G|^{2}$.

GAP: Groups, Algorithms, Programming

- GAP is a computer program that makes computations related to groups and group theory
- Examples:
- "G := SmallGroup([72,46])" : $C_{2} \times D_{6} \times D_{6}$
- "NormalSubgroups(G)" : returns all normal subgroups of a given group
- GAP can also find the rank of the representation category of a twisted double of a group.
- Dimension of a Drinfeld center $\mathcal{Z}(\mathcal{C})$ is $\operatorname{dim}(\mathcal{C})^{2}$, it's rank is $\operatorname{rank}(\mathcal{C})^{2}$.
- Dimension of a group's double $D^{\omega}(G)$ is $|G|^{2}$.
- We can get candidate groups by computing their doubles' ranks with GAP!

Some Computational Results

Some Computational Results

- Categories with fusion rules of $S O(9)_{2}$ can only come from doubling $D_{6} \times D_{6}$, twisted or not.

Some Computational Results

- Categories with fusion rules of $S O(9)_{2}$ can only come from doubling $D_{6} \times D_{6}$, twisted or not.
- Similar categories (rules of $S O(N)_{2}, N$ odd) seem to come from $D_{2 \sqrt{N}} \times D_{2 \sqrt{N}}$ (only untwisted).

Some Computational Results

- Categories with fusion rules of $S O(9)_{2}$ can only come from doubling $D_{6} \times D_{6}$, twisted or not.
- Similar categories (rules of $S O(N)_{2}, N$ odd) seem to come from $D_{2 \sqrt{N}} \times D_{2 \sqrt{N}}$ (only untwisted).
- Rules of $S O(18)_{2}$ come from one of:
- $C_{2} \times D_{6} \times D_{6}$
- $\left(C_{3} \rtimes C_{4}\right) \times D_{6}$
- $\left(C_{3} \times C_{3}\right) \rtimes\left(C_{4} \times C_{2}\right)$

Some Computational Results

- Categories with fusion rules of $S O(9)_{2}$ can only come from doubling $D_{6} \times D_{6}$, twisted or not.
- Similar categories (rules of $S O(N)_{2}, N$ odd) seem to come from $D_{2 \sqrt{N}} \times D_{2 \sqrt{N}}$ (only untwisted).
- Rules of $S O(18)_{2}$ come from one of:
- $C_{2} \times D_{6} \times D_{6}$
- $\left(C_{3} \rtimes C_{4}\right) \times D_{6}$
- $\left(C_{3} \times C_{3}\right) \rtimes\left(C_{4} \times C_{2}\right)$
- $S O(N)_{2}$ for $N=2 \bmod 4$ seem to behave similarly

Some Computational Results

- Categories with fusion rules of $S O(9)_{2}$ can only come from doubling $D_{6} \times D_{6}$, twisted or not.
- Similar categories (rules of $S O(N)_{2}, N$ odd) seem to come from $D_{2 \sqrt{N}} \times D_{2 \sqrt{N}}$ (only untwisted).
- Rules of $S O(18)_{2}$ come from one of:
- $C_{2} \times D_{6} \times D_{6}$
- $\left(C_{3} \rtimes C_{4}\right) \times D_{6}$
- $\left(C_{3} \times C_{3}\right) \rtimes\left(C_{4} \times C_{2}\right)$
- $\mathrm{SO}(N)_{2}$ for $N=2 \bmod 4$ seem to behave similarly
- Data already available for doubles of groups of order <47

A Special Case: $S O(8)_{2}$

A Special Case: $\mathrm{SO}(8)_{2}$

- The $S O(8)_{2}$ case is not an untwisted double.

A Special Case: $\mathrm{SO}(8)_{2}$

- The $S O(8)_{2}$ case is not an untwisted double.
- Twisted doubles are much harder to compute.

A Special Case: $\mathrm{SO}(8)_{2}$

- The $S O(8)_{2}$ case is not an untwisted double.
- Twisted doubles are much harder to compute.
- Thanks to Angus Gruen's honors thesis, we know that $\mathrm{SO}(8)_{2}$ comes from SmallGroup[32,49] (extraspecial group of order 32)

Potential Further Directions

- Specify twists

Potential Further Directions

- Specify twists
- Generalize, generalize, generalize

Potential Further Directions

- Specify twists
- Generalize, generalize, generalize
- Isocategorical or Morita equivalent groups in $2 \bmod 4$ case?

Potential Further Directions

- Specify twists
- Generalize, generalize, generalize
- Isocategorical or Morita equivalent groups in $2 \bmod 4$ case?
- Subcategory structure of Drinfeld center is known: same fusion rules as $\mathcal{C} \boxtimes \mathcal{C}$

Potential Further Directions

- Specify twists
- Generalize, generalize, generalize
- Isocategorical or Morita equivalent groups in $2 \bmod 4$ case?
- Subcategory structure of Drinfeld center is known: same fusion rules as $\mathcal{C} \boxtimes \mathcal{C}$ Subcategory structure of $\operatorname{Rep} D^{\omega}(G)$ is also known [NNW]

Link Invariants

Recall, every modular category \mathcal{C} has an associated link invariant $\operatorname{Inv}(\rho)$.

Link Invariants

Recall, every modular category \mathcal{C} has an associated link invariant $\operatorname{Inv}(\rho)$.

Definition

A knot is a closed, non-intersecting curve embedded in 3 dimensions.

Link Invariants

Recall, every modular category \mathcal{C} has an associated link invariant $\operatorname{Inv}(\rho)$.

Definition

A knot is a closed, non-intersecting curve embedded in 3 dimensions.

Example (Table of Knots)

Definition
A link is a knot with multiple components.

Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Definition

A link invariant is a function from the set of links to some other set such that equivalent links are mapped to the same element.

Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Definition

A link invariant is a function from the set of links to some other set such that equivalent links are mapped to the same element.

- Most link invariants are not one-to-one

Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Definition

A link invariant is a function from the set of links to some other set such that equivalent links are mapped to the same element.

- Most link invariants are not one-to-one
- The "stronger" a link invariant is, the more links it distinguishes-the harder it is to compute

Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Definition

A link invariant is a function from the set of links to some other set such that equivalent links are mapped to the same element.

- Most link invariants are not one-to-one
- The "stronger" a link invariant is, the more links it distinguishes-the harder it is to compute

Performing a Topological Computation

Performing a Topological Computation

Performing a Topological Computation

- Pairs of self-dual anyon $X \in \mathcal{C}$ are created from the vacuum, braided (β), and annihilated

Performing a Topological Computation

- Pairs of self-dual anyon $X \in \mathcal{C}$ are created from the vacuum, braided (β), and annihilated
- This forms the closure $\hat{\beta}$ of β

Performing a Topological Computation

- Pairs of self-dual anyon $X \in \mathcal{C}$ are created from the vacuum, braided (β), and annihilated
- This forms the closure $\hat{\beta}$ of β
- Every link can be formed by the closure of some braid

Performing a Topological Computation

- Pairs of self-dual anyon $X \in \mathcal{C}$ are created from the vacuum, braided (β), and annihilated
- This forms the closure $\hat{\beta}$ of β
- Every link can be formed by the closure of some braid
- Evaluating the result of this computation involves performing this process many times and finding the probability of each fusion outcome

Performing a Topological Computation

- Pairs of self-dual anyon $X \in \mathcal{C}$ are created from the vacuum, braided (β), and annihilated
- This forms the closure $\hat{\beta}$ of β
- Every link can be formed by the closure of some braid
- Evaluating the result of this computation involves performing this process many times and finding the probability of each fusion outcome
- This is equivalent to evaluating $\operatorname{Inv}(\hat{\beta})^{a}$
${ }^{a}$ At a point. May distinguish between fewer knots.

Classical Link Invariants

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

The strength of the link invariant is corresponds to the richness of computation that can be performed.

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

The strength of the link invariant is corresponds to the richness of computation that can be performed.

The extended Property F conjecture states that categories with property F are associated to classical link invariants.

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

The strength of the link invariant is corresponds to the richness of computation that can be performed.

The extended Property F conjecture states that categories with property F are associated to classical link invariants.

Definition

A link invariant is called classical if

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

The strength of the link invariant is corresponds to the richness of computation that can be performed.

The extended Property F conjecture states that categories with property F are associated to classical link invariants.

Definition

A link invariant is called classical if

- it was known by 1979, and/or

Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating the link invariant associated with the anyonic system on some braid.

The strength of the link invariant is corresponds to the richness of computation that can be performed.

The extended Property F conjecture states that categories with property F are associated to classical link invariants.

Definition

A link invariant is called classical if

- it was known by 1979, and/or
- there exists a polynomial time algorithim for computing it.

Finding $\operatorname{Inv}(\hat{\beta})$

Finding $\operatorname{Inv}(\hat{\beta})$

Consider modular, group-theoretical category \mathcal{C}. Recall, this means

$$
Z(\mathcal{C}) \cong \operatorname{Rep}\left(D^{\omega} G\right)
$$

for some finite group G.

Finding $\operatorname{Inv}(\hat{\beta})$

Consider modular, group-theoretical category \mathcal{C}. Recall, this means

$$
Z(\mathcal{C}) \cong \operatorname{Rep}\left(D^{\omega} G\right)
$$

for some finite group $G . D G \in \operatorname{Rep}\left(D^{\omega} G\right)$ is a tensor-generating simple object.

Finding $\operatorname{Inv}(\hat{\beta})$

Consider modular, group-theoretical category \mathcal{C}. Recall, this means

$$
Z(\mathcal{C}) \cong \operatorname{Rep}\left(D^{\omega} G\right)
$$

for some finite group $G . D G \in \operatorname{Rep}\left(D^{\omega} G\right)$ is a tensor-generating simple object.

$$
\ln v_{\mathcal{C}}(\hat{\beta})=
$$

Finding $\operatorname{Inv}(\hat{\beta})$

Consider modular, group-theoretical category \mathcal{C}. Recall, this means

$$
Z(\mathcal{C}) \cong \operatorname{Rep}\left(D^{\omega} G\right)
$$

for some finite group $G . D G \in \operatorname{Rep}\left(D^{\omega} G\right)$ is a tensor-generating simple object.

$$
\ln v_{\mathcal{C}}(\hat{\beta})=
$$

The Fundamental Group

Definition

For a link L in the 3-sphere \mathbf{S}^{3}, fundamental group $\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is the group of loops from a point x in the knot complement $\mathbf{S}^{3} \backslash L$ under contraction.

Example (the fundamental group of the trefoil)

The Fundamental Group

Definition

For a link L in the 3-sphere \mathbf{S}^{3}, fundamental group $\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is the group of loops from a point x in the knot complement $\mathbf{S}^{3} \backslash L$ under contraction.

Example (the fundamental group of the trefoil)

The Fundamental Group

Definition

For a link L in the 3-sphere \mathbf{S}^{3}, fundamental group $\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is the group of loops from a point x in the knot complement $\mathbf{S}^{3} \backslash L$ under contraction.

Example (the fundamental group of the trefoil)

The Fundamental Group

Example (the fundamental group of the trefoil)

The Fundamental Group

Example (the fundamental group of the trefoil)

$$
c^{-1} b^{-1} c a=1
$$

The Fundamental Group

Example (the fundamental group of the trefoil)

$$
\begin{aligned}
& c^{-1} b^{-1} c a=1 \\
& a^{-1} c^{-1} a b=1
\end{aligned}
$$

The Fundamental Group

Example (the fundamental group of the trefoil)

$$
\begin{aligned}
& c^{-1} b^{-1} c a=1 \\
& a^{-1} c^{-1} a b=1 \\
& b^{-1} a^{-1} b c=1
\end{aligned}
$$

The Fundamental Group

Example (the fundamental group of the trefoil)

$$
c^{-1} b^{-1} c a=1
$$

$$
a^{-1} c^{-1} a b=1
$$

$$
b^{-1} a^{-1} b c=1
$$

Plugging $a^{-1}=c^{-1} b^{-1} c$ into the third relation and rearranging,

$$
c b c=b c b
$$

The Fundamental Group

Example (the fundamental group of the trefoil)

$$
c^{-1} b^{-1} c a=1
$$

$a^{-1} c^{-1} a b=1$

$$
b^{-1} a^{-1} b c=1
$$

Plugging $a^{-1}=c^{-1} b^{-1} c$ into the third relation and rearranging,

$$
c b c=b c b
$$

Finding $\operatorname{Inv}(\hat{\beta})$

Finding $\operatorname{Inv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

Finding $\operatorname{Inv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Finding $\operatorname{Inv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Choosing G to be the finite group our group-theoretical category comes from, we have

Finding $\operatorname{lnv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Choosing G to be the finite group our group-theoretical category comes from, we have

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)=
$$

Finding $\operatorname{lnv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Choosing G to be the finite group our group-theoretical category comes from, we have

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)=
$$

Finding $\operatorname{lnv}(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Choosing G to be the finite group our group-theoretical category comes from, we have

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)=
$$

$$
=\operatorname{In} v_{\mathcal{C}}(\hat{\beta})
$$

Finding $\ln v(\hat{\beta})$

Definition

$\pi\left(\mathbf{S}^{3} \backslash L, x\right)$ is very difficult to deal with, so we consider another invariant:

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)
$$

where G is a finite group.

Choosing G to be the finite group our group-theoretical category comes from, we have

$$
\operatorname{Hom}\left(\pi\left(\mathbf{S}^{3} \backslash L, x\right), G\right)=
$$

$$
=\operatorname{In} v_{\mathcal{C}}(\hat{\beta})
$$

. So, we can compute $\operatorname{Inv} v_{\mathcal{C}}(\hat{\beta})$! But what classical invariant is this?

Polynomial Invariants

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

[Ganzell]

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

[Ganzell]

Every polynomial link invariant has an associated

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

Every polynomial link invariant has an associated

- algebra of a quotient of the braid group $\mathbb{C} B_{n} /$ -

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

Every polynomial link invariant has an associated

- algebra of a quotient of the braid group $\mathbb{C} B_{n} /$ -
- quantum group category

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

Every polynomial link invariant has an associated

- algebra of a quotient of the braid group $\mathbb{C} B_{n} /$ -
- quantum group category

The 2-variable Kauffman polynomial $K_{q, r}(L)$ is associated with $U_{q, s o(n)}$

Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating the polynomial at different points produces an invariant of different strength.

Example (the Jones polynomial $V_{t}(L)$)

$$
V_{1}(K)=1, \forall K \in\{\text { knots }\}
$$

Every polynomial link invariant has an associated

- algebra of a quotient of the braid group $\mathbb{C} B_{n} /$ -
- quantum group category

The 2-variable Kauffman polynomial $K_{q, r}(L)$ is associated with $U_{q, s o(n)}$ so the link invariant for our categories (fusion rules of $\left.\mathrm{SO}(\mathrm{N})_{2}\right)$ must be associated with $K_{q, r}(L)$ for some q, r.

The Special Case of $\mathrm{SO}(8)_{2}$

- In most of our integral metaplectic modular categories, we have objects of dimension 1,2 , and $\operatorname{sqrt}(N)$ or $\operatorname{sqrt}\left(\frac{N}{2}\right)$.
- In most of our integral metaplectic modular categories, we have objects of dimension 1,2 , and $\operatorname{sqrt}(N)$ or $\operatorname{sqrt}\left(\frac{N}{2}\right)$.
- There could be different invariants associated with non-invertible objects of different dimension.

The Special Case of $S O(8)_{2}$

- In most of our integral metaplectic modular categories, we have objects of dimension 1,2 , and $\operatorname{sqrt}(N)$ or $\operatorname{sqrt}\left(\frac{N}{2}\right)$.
- There could be different invariants associated with non-invertible objects of different dimension.
- Recall, for categories with the same fusion rules as $S O(8)_{2}$, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{1}, Y_{2}, Y_{3}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$ and all of the non-invertible objects have dimension 2.

The Special Case of $S O(8)_{2}$

- In most of our integral metaplectic modular categories, we have objects of dimension 1,2 , and $\operatorname{sqrt}(N)$ or $\operatorname{sqrt}\left(\frac{N}{2}\right)$.
- There could be different invariants associated with non-invertible objects of different dimension.
- Recall, for categories with the same fusion rules as $S O(8)_{2}$, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{1}, Y_{2}, Y_{3}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$ and all of the non-invertible objects have dimension 2.
- These categories are especially interesting because of the extra symmetry they have.

The Special Case of $\mathrm{SO}(8)_{2}$

- In most of our integral metaplectic modular categories, we have objects of dimension 1,2 , and $\operatorname{sqrt}(N)$ or $\operatorname{sqrt}\left(\frac{N}{2}\right)$.
- There could be different invariants associated with non-invertible objects of different dimension.
- Recall, for categories with the same fusion rules as $S O(8)_{2}$, $\mathcal{C}=\left\{\mathbf{1}, f, g, f g, Y_{1}, Y_{2}, Y_{3}, V_{1}, V_{2}, W_{1}, W_{2}\right\}$ and all of the non-invertible objects have dimension 2.
- These categories are especially interesting because of the extra symmetry they have.
- We know that the link invariant associated with these categories is the 2-variable Kauffman polynomial evaluated at $q=e^{\frac{\pi i}{8}} r=-q^{-1}$ [Tuba, Wenzl]

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.

Definition

The writhe of a link is the sum of the crossing signs.

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.

Definition

The writhe of a link is the sum of the crossing signs.

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.

Definition

The writhe of a link is the sum of the crossing signs.
For example, for the trefoil $\omega(L)=-3$

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.
Note: $\tilde{K}(L)$ is only invariant under regular isotopy. So, $\tilde{K}(L)$ is invariant under Type II and III Reidemeister Moves, but not Type I.

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.
Note: $\tilde{K}(L)$ is only invariant under regular isotopy. So, $\tilde{K}(L)$ is invariant under Type II and III Reidemeister Moves, but not Type I.

Type II

Type III

The 2-Variable Kauffman Polynomial (Wenzl's Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial in terms of q and r as:

$$
K(L)(q, r)=r^{\omega(L)} \tilde{K}(L)
$$

where $\omega(L)$ is the writhe of a link.

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\gtrdot)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\not \supset)$
- $\tilde{K}($ 入 $)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\gtrdot)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}(入)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\gtrdot)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}(入)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}(入)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

$$
\begin{gathered}
\tilde{K}(\mathscr{S})=\tilde{K}(\mathscr{S})-\left(q-q^{-1}\right)(\tilde{K}(\mathscr{S})-\tilde{K}(\mathscr{S}) \\
\tilde{K}(\mathscr{S})=r \tilde{K}(\bigcirc)-\left(q-q^{-1}\right)\left(r^{-2} \tilde{K}(\bigcirc)-\tilde{K}(\mathscr{S})\right)
\end{gathered}
$$

Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}(入)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

$$
\tilde{K}(\mathscr{S})=\tilde{K}(\mathscr{P})-\left(q-q^{-1}\right)(\tilde{K}(\mathscr{S})-\tilde{K}(\mathscr{S})
$$

$$
\tilde{K}(\mathscr{S})=r \tilde{K}(\bigcirc)-\left(q-q^{-1}\right)\left(r^{-2} \tilde{K}(\bigcirc)-\tilde{K}(\mathscr{\Im})\right)
$$

$\tilde{K}(\mathscr{S})=2 r+\left(q-q^{-1}\right)^{2}\left(r-r^{-1}\right)+4\left(q-q^{-1}\right)-2 r^{-2}\left(q-q^{-1}\right)$

Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}(入)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

$$
\tilde{K}(\mathscr{S})=\tilde{K}(\mathscr{P})-\left(q-q^{-1}\right)(\tilde{K}(\mathscr{S})-\tilde{K}(\mathscr{S})
$$

$$
\tilde{K}(\mathscr{S})=r \tilde{K}(\bigcirc)-\left(q-q^{-1}\right)\left(r^{-2} \tilde{K}(\bigcirc)-\tilde{K}(\mathscr{\Im})\right)
$$

$\tilde{K}(\mathscr{S})=2 r+\left(q-q^{-1}\right)^{2}\left(r-r^{-1}\right)+4\left(q-q^{-1}\right)-2 r^{-2}\left(q-q^{-1}\right)$
$K(\mathscr{G})=2 r^{-2}+2\left(q-q^{-1}\right)^{2}\left(r^{-2}-r^{-4}\right)+4 r^{-3}\left(q-q^{-1}\right)-2 r^{-5}\left(q-q^{-1}\right)$

The 2-Variable Kauffman Polynomial and $\mathrm{SO}(8)_{2}$

- Recall, ideally we want to evaluate the 2-Variable Kauffman Polynomial for a specific q and r, and show that this is some classical invariant

The 2-Variable Kauffman Polynomial and $\mathrm{SO}(8)_{2}$

- Recall, ideally we want to evaluate the 2-Variable Kauffman Polynomial for a specific q and r, and show that this is some classical invariant
- In particular, we want q and r to be some particular roots of unity. Let $q=e^{\frac{\pi i}{8}} r=-q^{-1}$ [Tuba, Wenzl]

Some Knot Good News...

- The skein relation that we have been using is Wenzl's construction which connects the 2-Variable Kauffman Polynomial to Quantum Groups [Tuba, Wenzl].

Some Knot Good News...

- The skein relation that we have been using is Wenzl's construction which connects the 2-Variable Kauffman Polynomial to Quantum Groups [Tuba, Wenzl].

Wenzl's Construction

- $\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
- $r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
- $\tilde{K}($ 入 $)-\tilde{K}(久)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

Some Knot Good News．．．

－The skein relation that we have been using is Wenzl＇s construction which connects the 2－Variable Kauffman Polynomial to Quantum Groups［Tuba，Wenzl］．

Wenzl＇s Construction
－$\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
－$r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
－$\tilde{K}($ 入 $)-\tilde{K}\left(\right.$ 久）$=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$
Dubrovnik＇s Skein Relation：
－$\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
－$r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
－$\tilde{K}\left(\right.$ 久）$-\tilde{K}(入)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$

Some Knot Good News．．．

－The skein relation that we have been using is Wenzl＇s construction which connects the 2－Variable Kauffman Polynomial to Quantum Groups［Tuba，Wenzl］．

Wenzl＇s Construction
－$\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
－$r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
－$\tilde{K}($ 入 $)-\tilde{K}\left(\right.$ 久）$=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$
Dubrovnik＇s Skein Relation：
－$\tilde{K}(\bigcirc)=\frac{r-r^{-1}}{q-q^{-1}}+1$
－$r \tilde{K}(\curlyvee)=\tilde{K}(\mid)=r^{-1} \tilde{K}(\nmid \bigcirc)$
－$\tilde{K}\left(\right.$ 久）$-\tilde{K}($ 入 $)=\left(q-q^{-1}\right)(\tilde{K}()()-\tilde{K}(\asymp))$
Kauffman＇s Original Skein Relation：
－$\tilde{K}(\bigcirc)=1$
－$a \tilde{K}(\curlyvee)=\tilde{K}(\mid)=a^{-1} \tilde{K}(\curlywedge)$
－$\tilde{K}(入)+\tilde{K}($ 久 $)=z(\tilde{K}()()+\tilde{K}(\asymp))$

All Hope is Knot Lost

- We want a mapping from the original skein relation defined by Kauffman to Wenzl's version of the 2-Variable Kauffman Polynomial evaluated at $q=e^{\frac{\pi i}{8}}$, and $r=-q^{-1}$.

All Hope is Knot Lost

- We want a mapping from the original skein relation defined by Kauffman to Wenzl's version of the 2-Variable Kauffman Polynomial evaluated at $q=e^{\frac{\pi i}{8}}$, and $r=-q^{-1}$.
- There is a mapping from the original Kauffman construction to the Dubrovnik construction [Lickorish]:

$$
K_{D}(L)=(-1)^{c(L)-1} K(L) \text { with } a=i r, z=-i\left(q-q^{-1}\right)
$$

All Hope is Knot Lost

- We want a mapping from the original skein relation defined by Kauffman to Wenzl's version of the 2-Variable Kauffman Polynomial evaluated at $q=e^{\frac{\pi i}{8}}$, and $r=-q^{-1}$.
- There is a mapping from the original Kauffman construction to the Dubrovnik construction [Lickorish]:

$$
K_{D}(L)=(-1)^{c(L)-1} K(L) \text { with } a=i r, z=-i\left(q-q^{-1}\right)
$$

- Following Lickorish's proof, we can get a mapping from the original Kauffman construction to Wenzl's version of the 2-Varible Kauffman:
$K_{w}(L)=(-1)^{c(L)-1+w(I)} r^{2 w(L)} K(L)$ with $a=i r, z=-i\left(q-q^{-1}\right)$

All Hope is Knot Lost

- We want a mapping from the original skein relation defined by Kauffman to Wenzl's version of the 2-Variable Kauffman Polynomial evaluated at $q=e^{\frac{\pi i}{8}}$, and $r=-q^{-1}$.
- There is a mapping from the original Kauffman construction to the Dubrovnik construction [Lickorish]:

$$
K_{D}(L)=(-1)^{c(L)-1} K(L) \text { with } a=i r, z=-i\left(q-q^{-1}\right)
$$

- Following Lickorish's proof, we can get a mapping from the original Kauffman construction to Wenzl's version of the 2-Varible Kauffman:
$K_{w}(L)=(-1)^{c(L)-1+w(I)} r^{2 w(L)} K(L)$ with $a=i r, z=-i\left(q-q^{-1}\right)$
- Now, we just need an equation for our invariant when we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$
- Now, we just need an equation for our invariant when we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$

Table 1

(a, z)	$F(L)_{(a, z)}$
$\left(q^{3}, q^{-1}+q\right)$	$(-1)^{c(L)-1}\left[(V(L))^{2}\right]_{t=-q^{-2}}$
$\left(q, q^{-1}+q\right)$	zero when L is a split link
$\left(i, q^{-1}+q\right)$	$(-1)^{c(L)-1}$
$\left(-q, q^{-1}+q\right)$	$\frac{1}{2}(-1)^{c(L)-1} \Sigma_{X \subset L} q^{4 \text { linking number }(X, L-X)}$, see $[\mathbf{1 0}]$
$\left(-i q^{2}, q^{-1}+q\right)$	$\left[t^{2 \lambda(L)}\left(t^{-\frac{1}{2}}+t^{\frac{1}{2}}\right)\left(t^{-1}+1+t\right)^{-1} \sum_{x \subset L}(-1)^{c(X)} V\left(X^{p(2)}\right)\right]_{t=-i q^{-1}}$
$\left(-q^{3} \cdot q^{-1}+q\right)$	$[V(L)]_{t=q^{-4}}$

[Lickorish]

- Now, we just need an equation for our invariant when we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$

Table 1

(a, z)	$F(L)_{(a, z)}$
$\left(q^{3}, q^{-1}+q\right)$	$(-1)^{c(L)-1}\left[(V(L))^{2}\right]_{t=-q^{-2}}$
$\left(q, q^{-1}+q\right)$	zero when L is a split link
$\left(i, q^{-1}+q\right)$	$(-1)^{c(L)-1}$
$\left(-q, q^{-1}+q\right)$	$\frac{1}{2}(-1)^{c(L)-1} \sum_{x=L} q^{4 \text { linking number }(X, L-X)}, \quad$ see $[\mathbf{1 0}]$
$\left(-i q^{2}, q^{-1}+q\right)$	$\left[t^{2 \alpha(L)}\left(t^{-\frac{1}{2}}+t^{\frac{1}{2}}\right)\left(t^{-1}+1+t\right)^{-1} \sum_{x \subset L}(-1)^{c(X)} V\left(X^{p(2)}\right)\right]_{t--i q^{-1}}$
$\left(-q^{3} \cdot q^{-1}+q\right)$	$[V(L)]_{t=q^{-4}}$

[Lickorish]
Note: there are no restrictions on q. The q in the table is not the same q that Wenzl used in his version of the Kauffman Polynomial

- Recall, to get our desired invariant we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$ into the Wenzl's version of the 2-Variable Kauffman Polynomial
- Recall, to get our desired invariant we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$ into the Wenzl's version of the 2-Variable Kauffman Polynomial
- From our mapping, we have $a=i r$ and $z=-i\left(q-q^{-1}\right)$
- Recall, to get our desired invariant we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$ into the Wenzl's version of the 2-Variable Kauffman Polynomial
- From our mapping, we have $a=i r$ and $z=-i\left(q-q^{-1}\right)$
- So, $a=-\left(q^{3}\right)$ and $z=\left(q^{3}+q^{-3}\right)$
- Recall, to get our desired invariant we plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$ into the Wenzl's version of the 2-Variable Kauffman Polynomial
- From our mapping, we have $a=i r$ and $z=-i\left(q-q^{-1}\right)$
- So, $a=-\left(q^{3}\right)$ and $z=\left(q^{3}+q^{-3}\right)$
- Then, from Lickorish's table we know

$$
K(L)=\frac{1}{2}(-1)^{c(L)-1} \sum_{X \subset L}\left(q^{3}\right)^{4 \text { linkingnumber }(X, L-X)}
$$

Final Results

Combining our mapping and the expression for the original 2-Variable Kauffman Polynomial we know:

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

The link invariant associated with categories with the fusion rules of $\mathrm{SO}(8)_{2}$ is

$$
K_{w}(L)=\frac{(-1)^{w(L)} r^{2 w(L)}}{2} \sum_{X \subset L}(-i)^{\text {linkingnumber }(X, L-X)}
$$

Final Results

Combining our mapping and the expression for the original 2-Variable Kauffman Polynomial we know:

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

The link invariant associated with categories with the fusion rules of $\mathrm{SO}(8)_{2}$ is

$$
K_{w}(L)=\frac{(-1)^{w(L)} r^{2 w(L)}}{2} \sum_{X \subset L}(-i)^{\text {linkingnumber }(X, L-X)}
$$

What does this mean?

Final Results

Combining our mapping and the expression for the original 2-Variable Kauffman Polynomial we know:

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

The link invariant associated with categories with the fusion rules of $\mathrm{SO}(8)_{2}$ is

$$
K_{w}(L)=\frac{(-1)^{w(L)} r^{2 w(L)}}{2} \sum_{X \subset L}(-i)^{\text {linkingnumber }(X, L-X)}
$$

What does this mean?

- We don't have to go through the process of using the skein relation to compute the expression for Wenzl's construction of the 2-Variable Kauffman Polynomial and plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$

Final Results

Combining our mapping and the expression for the original 2-Variable Kauffman Polynomial we know:

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

The link invariant associated with categories with the fusion rules of $\mathrm{SO}(8)_{2}$ is

$$
K_{w}(L)=\frac{(-1)^{w(L)} r^{2 w(L)}}{2} \sum_{X \subset L}(-i)^{\text {linkingnumber }(X, L-X)}
$$

What does this mean?

- We don't have to go through the process of using the skein relation to compute the expression for Wenzl's construction of the 2-Variable Kauffman Polynomial and plug in $q=e^{\frac{\pi i}{8}}$ and $r=-q^{-1}$
- We can perform all of our quantum computations for anyons from these categories using this expression

References

- Ardonne, Cheng, Rowell, Wang arxiv.org/abs/1601.05460
- Bakalov, Kirillov, math.stonybrook.edu/ kirillov/tensor/tensor.html
- Bruillard, Plavnik, Rowell, arxiv.org/abs/1609.04896
- Drinfeld, Gelaki, Nikshych, Ostrik, https://arxiv.org/pdf/0704.0195v2.pdf
- Etingof, Nikshych, Ostrik arxiv.org/pdf/math/0203060.pdf
- Ganzell, faculty.smcm.edu/sganzell/papers/localjones.pdf
- Gelaki, Nikshych, arxiv.org/pdf/math/0610726.pdf
- Gruen, tqft.net/web/research/students/AngusGruen/
- Lickorish, cambridge.org/some_linkpolynomial_relations.pdf
- Lickorish, Millett.
link.springer.com/content/pdf/10.1007/BFb0081470.pdf

References

- Müger, arxiv.org/pdf/math/0201017.pdf
- Naidu, Nikshych, Witherspoon, arxiv.org/pdf/0810.0032.pdf
- Naidu, Rowell, arxiv.org/pdf/0903.4157.pdf
- Tuba, Wenzl, arxiv.org/pdf/math/0301142.pdf
- Wenzl, projecteuclid.org/euclid.cmp/1104201404

References

- Müger, arxiv.org/pdf/math/0201017.pdf
- Naidu, Nikshych, Witherspoon, arxiv.org/pdf/0810.0032.pdf
- Naidu, Rowell, arxiv.org/pdf/0903.4157.pdf
- Tuba, Wenzl, arxiv.org/pdf/math/0301142.pdf
- Wenzl, projecteuclid.org/euclid.cmp/1104201404

Thank you!

