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What is a Quantum Computer?

Normal computers use physical effects to make computations

Quantum computers use quantum physical effects to make
computations

Effects such as superposition, entanglement

Potential for exponential speedup compared to classical
computers on certain applications

Challenges: Required conditions, decoherence
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Topological Quantum Computing

Computations done by braiding quantum particles

Particle types: bosons, fermions, anyons in 2 dimensions

We can take a measurement after braiding, which
approximates some link invariant on the braid formed

Braiding is topological - resistant to decoherence

Important question: how much information does braiding give
us?

Anyon systems modeled using modular categories
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Modular Categories

Definition

A Modular Category is a ribbon fusion category with an
invertible S matrix.

Objects are anyons or superpositions of anyons: direct sum
⊕

Finitely many anyon types: simple objects

Anyon fusion: tensor product
⊗

Antiparticles: duality (X
⊗

X ∗ ∼= 1
⊕
...)

Braiding: Isomorphism cx ,y between X
⊗

Y and Y
⊗

X

Twist: Isomorphism between Xi and itself, given by θi
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Modular Data

Any premodular (ribbon fusion) category has an S and T
matrix associated with it

S captures braiding statistics:

Sij = tr(cXi ,Xj
◦ cXi ,Xj

)

T matrix captures twists: diagonal, Ti ,i = θXi

Premodular categories with invertible S matrices are called
modular categories

This corresponds to all anyon types being observable
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To the Point

A modular category has a representation of the braid group
associated with it

This representation tells us how much information about the
braiding is preserved

No representation is faithful - how good can we get?

Conjecture (Naidu, Rowell)

A category corresponds to a braid group representation of finite
image (Property F ) if and only if it is weakly integral (all objects
have dimension d such that d2 ∈ Z)

Our work focuses on verifying the property F conjecture for
integral metaplectic modular categories
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Integral Metaplectic Modular Categories

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

All integral metaplectic modular categories have property F

We showed that they are group theoretical, which implies
property F

group theoreticity means the category ”comes from” a finite
group

This means that using these anyon systems, we can’t create a
universal quantum computer using braiding alone
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How Will We Prove Group Theoreticity?

Definition

Let X, Y ∈ C Then, X centralizes Y if and only if their braiding is
trivial.

Definition

For any subcategory L of a braided fusion category C the
centralizer of L denoted by ZC(L) is the subcategory consisting of
objects Y ∈ C that centralize all objects X ∈ L
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How will we Prove Group Theoreticity?

Definition

Let X ∈ C then, its dual X ∗ is the object in C such that X ⊗ X *
produces the identity in C.

Definition

Let L ⊂ C. Then, the adjoint subcategory Lad is the smallest
fusion subcategory of C that contains X ⊗ X ∗ for each simple
object X ∈ L.

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.
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Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.

What we need to do:

Find a subcategory L
Prove that L is symmetric

Show (ZC(L))ad ⊂ L
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Case 1: Integral Metapletic Modular Categories with the
same Fusion Rules as SO(N)2, N Odd

Definition

The fusion rules of a category C describe the result of taking the
tensor product of any two simple objects in C.

The unitary modular category SO(N)2 for odd N > 1 has two
simple objects, X1,X2 of dimension

√
N, two simple objects 1, Z

of dimension 1, and N−1
2 objects Yi , i = 1, ..., N−12 of dimension 2.

The fusion rules are:
1. Z ⊗ Yi

∼= Yi ,Z ⊗ Xit
∼= Xi (mod 2), Z⊗2 ∼= 1

2. X⊗2i
∼= 1⊕

⊕
i Yi ,

3. X1 ⊗ X2
∼= Z ⊕

⊕
i Yi ,

4. Yi ⊗ Yj
∼= Ymin{i+j ,N−i−j} ⊕ Y|i−j |, for i 6= j and

Y⊗2i = 1⊕ Z ⊕ Ymin{2i ,N−2i}
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The unitary modular category SO(N)2 for odd N > 1 has two
simple objects, X1,X2 of dimension

√
N, two simple objects 1, Z

of dimension 1, and N−1
2 objects Yi , i = 1, ..., N−12 of dimension 2.

The fusion rules are:
1. Z ⊗ Yi

∼= Yi ,Z ⊗ Xit
∼= Xi (mod 2), Z⊗2 ∼= 1

2. X⊗2i
∼= 1⊕

⊕
i Yi ,

3. X1 ⊗ X2
∼= Z ⊕

⊕
i Yi ,

4. Yi ⊗ Yj
∼= Ymin{i+j ,N−i−j} ⊕ Y|i−j |, for i 6= j and

Y⊗2i = 1⊕ Z ⊕ Ymin{2i ,N−2i}
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A Proposed Subcategory L

Recall, C = {1,Z ,Y1,Y2, ...,Yi ,X1,X2} for i = 1, ..., N−12

Lemma

Every integral metaplectic modular category C with the fusion rules
of SO(N)2 for odd N has a symmetric subcategory L generated by
1,Z and Yit where t =

√
N and 1 ≤ i ≤ t−1

2 .
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Proof that L = {1,Z ,Yit} is a fusion subcategory of C

We need to show that L is closed under the tensor product.

By our fusion rules, we know for Yit ,Yjt ∈ L, i 6= j

1⊗ Yit
∼= Yit and Z ⊗ Yit

∼= Yit

Y⊗2it
∼= 1⊕ Z ⊕ Ymin{(2i)t,(t−2i)t}
Case 1: (2i)t < (t − 2i)t
Case 2: (2i)t ≥ (t − 2i)t

Yit ⊗ Yjt
∼= Ymin{(i+j)t,(t−i−j)t} ⊕ Y|(i−j)t|

Case 1: (i + j)t < (t − i − j)t
Case 2: (i + j)t ≥ (t − i − j)t

Therefore, L is a fusion subcategory of C
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Proof that L is symmetric

Proposition (Müger)

Let L be a braided tensor category. L is symmetric if and only it it
coincides with its center ZL(L)

We will show an even stronger statement: L = ZC(L).

Proposition (Müger)

dim(L)dim(ZC(L)) = dim(C)

We know dim(C) = 4t2 and dim(L) = 2t

Thus, 2t(dim(ZC(L)) = 4t2 and dim(ZC(L)) = 2t.
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Grading

Definition

a G-grading is a partitioning of a category D such that the parts
are indexed by elements of G and if X ∈ Dg ,Y ∈ Dh then
X ⊗ Y ∈ Dgh

There is a faithful Z2 grading on C:

C1 = {1,Z ,Yi}
CZ = {X1,X2}
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Grading

There is a faithful Z2 grading on C:

C1 = {1,Z ,Yi}
CZ = {X1,X2}

Definition

The pointed subcategory Cpt is the subcategory of C containing all
of the objects of dimension 1.

Theorem (Gelaki, Nikschych)

ZC(Cpt) = C1

As Cpt ⊂ L, this means ZC(L) ⊂ C1 and we only need to examine
C1.
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De-equivariantization

De-equivariantization...

is like quotienting in a braided fusion category

preserves the fusion rules, i.e., if X ⊗ Y = A⊕ B then
F [X ]⊗ F [Y ] = F [A]⊕ F [B]
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Proof that L is symmetric (continued)

We take the de-equivariantization of C by 〈Z 〉 ∼= Rep(Z2).

The de-equivariantixation functor:

1 0
Z  0

Yi  i ⊕−i ∈ Zt2

The subcategory tensor generated by Yi corresponds to 〈i〉 ∈ Zt2 .

The trivial component of the de-equivariantization D0 preserves
braiding. D0 is the image of C1—exactly what we need.
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Proof that L is symmetric (continued)

We know if |〈i〉| = t, this corresponds to a subcategory of
dimension 2t containing exactly t−1

2 distinct Yi , 1 and Z .

Suppose i = t, |〈i〉| = t

Therefore, ZC(L) must be the subcategory tensor generated by Yt

which is L.

L is equal to its centralizer, it is symmetric.
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RECAP: How will we Prove Group Theoreticity?

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.

What we need to do:

Find a subcategory L X
Prove that L is symmetric X

Show (ZC(L))ad ⊂ L
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Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.

In the previous proof we saw that ZC(L) = L. Therefore,
(ZC(L))ad = Lad , so clearly (ZC(L))ad ⊂ L and C is group
theoretical.
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Template for Proof

Find a subcategory L
Relabel fusion rules so this is a similar problem to odd case

Prove that L is symmetric

Find the dimension of ZC(L)
Take the de-equivariantization by a boson and show ZC(L) is
in D0

Show that D0 is cyclic and therefore only contains the image
of one subcategory of the correct size
Show this subcategory ZL(L) = L

Show (ZC(L))ad ⊂ L
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Case 2: Integral metapletic modular categories with the
same fusion rules as SO(N)2, N even

N is even, so let k = N/2.
Then, we have k+7 total simple objects. We have 4 simple objects
of dimension 1, k − 1 simple objects of dimension 2, and 4 simple
objects of dimension

√
k = `

We have two cases to consider:
1. N ≡ 2 (mod 4), N is twice an odd square
ex. SO(18)2
C = {1, g , g2, g3,Y1,Y2,Y3,Y4,X1,X2,X3,X4,V1,V2,V3,V4}

2. N ≡ 0 (mod 4), N is twice an even square
ex. SO(8)2
C = {1, f , g , fg ,Y0,Y1,X0,V1,V2,W1,W2}
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Case a: N ≡ 2 (mod 4)

Recall, C = {1, g , g2, g3,Y1, ...Y k−1
2
,X1, ...X k−1

2
,V1,V2,V3,V4}

The fusion rules are:

g ⊗ Xa ' Y k−1
2
−a, and g2 ⊗ Xa ' Xa, and g2 ⊗ Ya ' Ya for

1 ≤ a ≤ (k − 1)/2

Xa ⊗ Xa = 1⊕ g2 ⊕ Xmin{2a,k−2a}

Xa ⊗ Xb = Xmin{a+b,k−a−b} ⊕ X|a−b| when (a 6= b)

V1 ⊗ V1 = g ⊕
⊕ k−1

2
a=1 Ya

gV1 = V3, gV3 = V4, gV2 = V1, gV4 = V2 and
g3Va = V ∗a ,V2 = V ∗1 ,V4 = V ∗3
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Relabeling fusion rules: N ≡ 2 (mod 4)

The fusion rules under our re-labeling:

g ⊗ Yi
∼= Yk−i , g

2 ⊗ Yi
∼= Yi

Y⊗2i
∼= 1⊕ g2 ⊕ Ymin{2i ,2k−2i}

Yi ⊗ Yj
∼= Ymin{i+j ,2k−i−j} ⊕ Y|i−j |, when i + j 6= k

Yi ⊗ Yj
∼= g ⊕ g3 ⊕ Y|i−j | when i + j = k .
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A proposed symmetric subcategory
L = {1, g 2,Y2nl} where ` =

√
k and 1 ≤ n ≤ `−1

2

Proposition (Müger)

Let L be a braided tensor category. L is symmetric if and only it it
coincides with its center ZL(L)

Proposition (Müger)

dim(L)dim(ZC(L)) = dim(C)

We know dim(C) = 8`2 and dim(L) = 2`

Thus, 2`(dim(ZC(L)) = 8`2 and dim(ZC(L)) = 4`.
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Gradings

There is a faithful Z4 grading on C:

C1 = {1, g2,Yi} where i is even

Cg = {V1,V4}
Cg2 = {g , g3,Yi} where i is odd

Cg3 = {V2,V3}.
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De-equivariantization of C by 〈g 2〉 ∼= Rep(Z2)

After de-equivariantizing by the boson g2 we can prove:

The trivial component of this de-equivariantization D0

contains the image of ZC(L)

D0 is cyclic and isomorphic to ZN

The subgroup 〈`〉 is the image of the subcategory of size 4`
which is what we were looking for

The subgroup 〈`〉 corresponds to the subcategory
ZC(L) = {1, g , g2, g3,Ym`}
ZL(L) = {1, g2,Y2n`}, 1 ≤ n ≤ `−1

2 = L
L is symmetric
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The subgroup 〈`〉 is the image of the subcategory of size 4`
which is what we were looking for

The subgroup 〈`〉 corresponds to the subcategory
ZC(L) = {1, g , g2, g3,Ym`}

ZL(L) = {1, g2,Y2n`}, 1 ≤ n ≤ `−1
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Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.

We know ZC(L) = {1, g , g2, g3,Ym`}.

Applying our fusion rules, we see

(ZC(L))ad = L

. So, clearly (ZC(L))ad ⊂ L and C is group theoretical.
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Case b: N ≡ 0 (mod 4)

Recall, C = {1, f , g , fg ,Y0, ...Y k
2
−1,X1, ...X k

2
−2,V1,V2,W1,W2}

The fusion rules are:

f ⊗2 = g⊗2 = 1, f ⊗ Xi = g ⊗ Xi = Xr−i−1 and
f ⊗ Yi = g ⊗ Yi = Yr−i

g ⊗ V1 = V2, f ⊗ V1 = V1 and f ⊗W1 = W2, g ⊗W1 = W1

V⊗21 = 1⊕ f ⊕
⊕r−1

i=0 Xi

W⊗2
1 = 1⊕ g ⊕

⊕r−1
i=0 Xi

W1 ⊗ V1 =
⊕r

i=0 Yi

Xi⊗Xj =

Xi+j+1 ⊕ Xj−i−1 i < j≤ r−1
2

1⊕ fg ⊕ X2i+1 i = j ¡ r−1
2

1⊕ f ⊕ g ⊕ fg i = j = r−1
2 < r − 1

Yi⊗Yj =

Xi+j ⊕ Xj−i−1 i < j≤ r
2

1⊕ fg ⊕ X2i i = j < r−1
2

1⊕ f ⊕ g ⊕ fg i = j = r
2
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Relabeling fusion rules: N ≡ 0 (mod 4)

The fusion rules under our re-labeling are:

g ⊗ Yi
∼= f ⊗ Yi

∼= Yk−i

Y⊗2i
∼= 1⊕ f ⊕ g ⊕ fg , when i = k

2

Y⊗2i
∼= 1⊕ fg ⊕ Ymin{2i ,2k−2i}, when i 6= k

2

Yi ⊗ Yj
∼= Ymin{i+j ,2k−i−j} ⊕ Y|i−j |, when i + j 6= k

Yi ⊗ Yj
∼= g ⊕ f ⊕ Y|i−j |, when i + j = k.
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Gradings

There is a faithful Z2 × Z2 grading on C:

C1 = {1, f , g , fg ,Yi} where i is even

Cg = {V1,V2}
Cf = {W1,W2}
Cfg = {Yi} where i is odd.
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A proposed symmetric subcategory
L = {1, f , g , fg ,Y2n`} where ` =

√
k and 1 ≤ n ≤ `−2

2

Proposition (Müger)

Let L be a braided tensor category. L is symmetric if and only it it
coincides with its center ZL(L)

Proposition (Müger)

dim(L)dim(ZC(L)) = dim(C)

We know dim(C) = 8`2 and dim(L) = 2`

Thus, 2`(dim(ZC(L)) = 8`2 and dim(ZC(L)) = 4`.
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De-equivariantization of C by 〈fg〉 ∼= Rep(Z2)

After de-equivariantizing by the boson fg we can prove:

The trivial component of this de-equivariantization D0

contains the image of ZC(L)

D0 is cyclic and isomorphic to ZN

The subgroup 〈`〉 is the image of the subcategory of size 4`
which is what we were looking for

The subgroup 〈`〉 corresponds to the subcategory
ZC(L) = {1, f , g , fg ,Y2n`} = L
L is symmetric
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Proof of Group Theoreticity

Theorem (Drinfeld, Gelaki, Nikshych, Ostrik)

A modular category C is group theoretical if and only if it is integral
and there is a symmetric subcategory L such that (ZC(L))ad ⊂ L.

We know ZC(L) = {1, f , g , fg ,Y2n`}.

Applying our fusion rules, we see

(ZC(L))ad = L

. So, (ZC(L))ad ⊂ L and C is group theoretical.
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Good News!!

ALL Integral Metapletic Modular
Categories are Group Theoretical!

Break!

But first, any questions?
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What Next After Group Theoreticity?

Definition

A category C is group theoretical if and only if its Drinfeld center
Z(C) is equivalent to the representation category of the twisted
double of some finite group:

Z(C) ∼= Rep Dω(G )

What groups do these categories come from? Could we find
some relationship between these categories and other
categories coming from other groups?

Drinfeld Center: Makes a larger category out of some input
category. In our case, this is equivalent to C � Crev

Twisted Double: Makes a Hopf algebra out of a group - like
groups, these have representation categories

Twist ω is an associativity factor
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some relationship between these categories and other
categories coming from other groups?

Drinfeld Center: Makes a larger category out of some input
category. In our case, this is equivalent to C � Crev

Twisted Double: Makes a Hopf algebra out of a group - like
groups, these have representation categories

Twist ω is an associativity factor
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GAP: Groups, Algorithms, Programming

GAP is a computer program that makes computations related
to groups and group theory

Examples:

”G := SmallGroup([72,46])” : C2 × D6 × D6

”NormalSubgroups(G)” : returns all normal subgroups of a
given group
GAP can also find the rank of the representation category of a
twisted double of a group.

Dimension of a Drinfeld center Z(C) is dim(C)2, it’s rank is
rank(C)2.

Dimension of a group’s double Dω(G ) is |G |2.

We can get candidate groups by computing their doubles’
ranks with GAP!
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Some Computational Results

Categories with fusion rules of SO(9)2 can only come from
doubling D6 × D6, twisted or not.

Similar categories (rules of SO(N)2, N odd) seem to come
from D2

√
N × D2

√
N (only untwisted).

Rules of SO(18)2 come from one of:

C2 × D6 × D6

(C3 o C4)× D6

(C3 × C3)o (C4 × C2)

SO(N)2 for N = 2 mod 4 seem to behave similarly

Data already available for doubles of groups of order <47
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A Special Case: SO(8)2

The SO(8)2 case is not an untwisted double.

Twisted doubles are much harder to compute.

Thanks to Angus Gruen’s honors thesis, we know that SO(8)2
comes from SmallGroup[32,49] (extraspecial group of order
32)
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Potential Further Directions

Specify twists

Generalize, generalize, generalize

Isocategorical or Morita equivalent groups in 2 mod 4 case?

Subcategory structure of Drinfeld center is known: same
fusion rules as C � C
Subcategory structure of RepDω(G ) is also known [NNW]
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Link Invariants

Recall, every modular category C has an associated link invariant
Inv(ρ).

Definition

A knot is a closed, non-intersecting curve embedded in 3
dimensions.

Example (Table of Knots)
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Link Invariant 101

Definition

A link is a knot with multiple components.

Question

Given two links, are they the same link, or different?

Definition

A link invariant is a function from the set of links to some other
set such that equivalent links are mapped to the same element.

Most link invariants are not one-to-one

The ”stronger” a link invariant is, the more links it
distinguishes—the harder it is to compute
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Performing a Topological Computation

Pairs of self-dual anyon X ∈ C are
created from the vacuum, braided
(β), and annihilated

This forms the closure β̂ of β

Every link can be formed by the
closure of some braid

Evaluating the result of this
computation involves performing
this process many times and
finding the probability of each
fusion outcome

This is equivalent to evaluating
Inv(β̂)a

aAt a point. May distinguish between fewer knots.
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Classical Link Invariants

Upshot

Every topological quantum computation is equivalent to evaluating
the link invariant associated with the anyonic system on some
braid.

The strength of the link invariant is corresponds to the richness of
computation that can be performed.

The extended Property F conjecture states that categories with
property F are associated to classical link invariants.

Definition

A link invariant is called classical if

it was known by 1979, and/or

there exists a polynomial time algorithim for computing it.
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Finding Inv(β̂)

Consider modular, group-theoretical category C. Recall, this means

Z (C) ∼= Rep(DωG )

for some finite group G . DG ∈ Rep(DωG ) is a tensor-generating
simple object.

InvC(β̂) =

.
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The Fundamental Group

Definition

For a link L in the 3-sphere S3, fundamental group π(S3�L, x)is
the group of loops from a point x in the knot complement S3�L
under contraction.

Example (the fundamental group of the trefoil)
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The Fundamental Group

Example (the fundamental group of the trefoil)

c−1b−1ca = 1

a−1c−1ab = 1

b−1a−1bc = 1

Plugging a−1 = c−1b−1c
into the third relation
and rearranging,

cbc = bcb

.
π(S3�L, x) = 〈b, c |cbc = bcb〉 ∼= B3
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Finding Inv(β̂)

Definition

π(S3�L, x) is very difficult to deal with, so we consider another
invariant:

Hom(π(S3�L, x),G )

where G is a finite group.

Choosing G to be the finite group our group-theoretical category
comes from, we have

Hom(π(S3�L, x),G ) = = InvC(β̂)

. So, we can compute InvC(β̂)! But what classical invariant is this?
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Polynomial Invariants

Definition

Polynomial link invariants map a link to a polynomial. Evaluating
the polynomial at different points produces an invariant of different
strength.

Example (the Jones polynomial Vt(L))

V1(K ) = 1,∀K ∈ {knots} [Ganzell ]

Every polynomial link invariant has an associated

algebra of a quotient of the braid group CBn/

quantum group category

The 2-variable Kauffman polynomial Kq,r (L) is associated with
Uq,so(n) so the link invariant for our categories (fusion rules of
SO(N)2) must be associated with Kq,r (L) for some q, r .
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The Special Case of SO(8)2

In most of our integral metaplectic modular categories, we
have objects of dimension 1, 2, and sqrt(N) or sqrt(N2 ).

There could be different invariants associated with
non-invertible objects of different dimension.

Recall, for categories with the same fusion rules as SO(8)2,
C = {1, f , g , fg ,Y1,Y2,Y3,V1,V2,W1,W2} and all of the
non-invertible objects have dimension 2.

These categories are especially interesting because of the
extra symmetry they have.

We know that the link invariant associated with these
categories is the 2-variable Kauffman polynomial evaluated at

q = e
πi
8 r = −q−1 [Tuba, Wenzl]
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The 2-Variable Kauffman Polynomial (Wenzl’s
Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial
in terms of q and r as:

K (L)(q, r) = rω(L)K̃ (L)

where ω(L) is the writhe of a link.

Definition

The writhe of a link is the sum of the crossing signs.
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The 2-Variable Kauffman Polynomial (Wenzl’s
Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial
in terms of q and r as:

K (L)(q, r) = rω(L)K̃ (L)

where ω(L) is the writhe of a link.

Definition

The writhe of a link is the sum of the crossing signs.

For example, for the trefoil ω(L) = −3

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren Integral Metapletic Modular Categories



The 2-Variable Kauffman Polynomial (Wenzl’s
Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial
in terms of q and r as:

K (L)(q, r) = rω(L)K̃ (L)

where ω(L) is the writhe of a link.

Note: K̃ (L) is only invariant under regular isotopy. So, K̃ (L) is
invariant under Type II and III Reidemeister Moves, but not Type I.
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The 2-Variable Kauffman Polynomial (Wenzl’s
Construction)

Let L be a link, then we define the 2-variable Kauffman Polynomial
in terms of q and r as:

K (L)(q, r) = rω(L)K̃ (L)

where ω(L) is the writhe of a link.

Skein Relation

K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )
− K̃ ( ))
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Example: 2-Variable Kauffman Polynomial of the Trefoil
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( )

= r K̃ (©)− (q − q−1)(r−2K̃ (©)− K̃ ( ))

K̃
( )

= 2r + (q − q−1)2(r − r−1) + 4(q − q−1)− 2r−2(q − q−1)

K
( )

= 2r−2+2(q−q−1)2(r−2−r−4)+4r−3(q−q−1)−2r−5(q−q−1)

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren Integral Metapletic Modular Categories



Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )
− K̃ ( ))

K̃
( )

= K̃
( )

− (q − q−1)(K̃ ( )− K̃ ( )

K̃
( )

= r K̃ (©)− (q − q−1)(r−2K̃ (©)− K̃ ( ))

K̃
( )

= 2r + (q − q−1)2(r − r−1) + 4(q − q−1)− 2r−2(q − q−1)

K
( )

= 2r−2+2(q−q−1)2(r−2−r−4)+4r−3(q−q−1)−2r−5(q−q−1)

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren Integral Metapletic Modular Categories



Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )
− K̃ ( ))

K̃
( )

= K̃
( )

− (q − q−1)(K̃ ( )− K̃ ( )

K̃
( )

= r K̃ (©)− (q − q−1)(r−2K̃ (©)− K̃ ( ))

K̃
( )

= 2r + (q − q−1)2(r − r−1) + 4(q − q−1)− 2r−2(q − q−1)

K
( )

= 2r−2+2(q−q−1)2(r−2−r−4)+4r−3(q−q−1)−2r−5(q−q−1)

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren Integral Metapletic Modular Categories



Example: 2-Variable Kauffman Polynomial of the Trefoil

Skein Relation

K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )
− K̃ ( ))

K̃
( )

= K̃
( )

− (q − q−1)(K̃ ( )− K̃ ( )

K̃
( )

= r K̃ (©)− (q − q−1)(r−2K̃ (©)− K̃ ( ))

K̃
( )

= 2r + (q − q−1)2(r − r−1) + 4(q − q−1)− 2r−2(q − q−1)

K
( )

= 2r−2+2(q−q−1)2(r−2−r−4)+4r−3(q−q−1)−2r−5(q−q−1)

Leslie Mavrakis, Sydney Timmerman, Benjamin Warren Integral Metapletic Modular Categories



The 2-Variable Kauffman Polynomial and SO(8)2

Recall, ideally we want to evaluate the 2-Variable Kauffman
Polynomial for a specific q and r , and show that this is some
classical invariant

In particular, we want q and r to be some particular roots of

unity. Let q = e
πi
8 r = −q−1 [Tuba, Wenzl]
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Some Knot Good News...

The skein relation that we have been using is Wenzl’s
construction which connects the 2-Variable Kauffman
Polynomial to Quantum Groups [Tuba, Wenzl].

Wenzl’s Construction
K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )

− K̃ ( ))

Dubrovnik’s Skein Relation:
K̃ (©) = r−r−1

q−q−1 + 1

r K̃ ( ) = K̃ (|) = r−1K̃ ( )

K̃ ( )− K̃ ( ) = (q − q−1)(K̃
( )

− K̃ ( ))

Kauffman’s Original Skein Relation:
K̃ (©) = 1

aK̃ ( ) = K̃ (|) = a−1K̃ ( )

K̃ ( ) + K̃ ( ) = z(K̃
( )

+ K̃ ( ))
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All Hope is Knot Lost

We want a mapping from the original skein relation defined by
Kauffman to Wenzl’s version of the 2-Variable Kauffman
Polynomial evaluated at q = e

πi
8 , and r = −q−1.

There is a mapping from the original Kauffman construction
to the Dubrovnik construction [Lickorish]:

KD(L) = (−1)c(L)−1K (L) with a = ir , z = −i(q − q−1)

Following Lickorish’s proof, we can get a mapping from the
original Kauffman construction to Wenzl’s version of the
2-Varible Kauffman:

Kw (L) = (−1)c(L)−1+w(l)r2w(L)K (L) with a = ir , z = −i(q−q−1)
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”We’re in Business”

Now, we just need an equation for our invariant when we plug

in q = e
πi
8 and r = −q−1

[Lickorish]

Note: there are no restrictions on q. The q in the table is not the
same q that Wenzl used in his version of the Kauffman Polynomial
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”We’re in Business”

Recall, to get our desired invariant we plug in q = e
πi
8 and

r = −q−1 into the Wenzl’s version of the 2-Variable
Kauffman Polynomial

From our mapping, we have a = ir and z = −i(q − q−1)

So, a = −(q3) and z = (q3 + q−3)

Then, from Lickorish’s table we know

K (L) =
1

2
(−1)c(L)−1

∑
X⊂L

(q3)4linkingnumber(X, L-X)
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Final Results

Combining our mapping and the expression for the original
2-Variable Kauffman Polynomial we know:

Theorem (Mavrakis, Poltoratski, Timmerman, Warren)

The link invariant associated with categories with the fusion rules
of SO(8)2 is

Kw (L) =
(−1)w(L)r2w(L)

2

∑
X⊂L

(−i)linkingnumber(X, L-X)

What does this mean?

We don’t have to go through the process of using the skein
relation to compute the expression for Wenzl’s construction of

the 2-Variable Kauffman Polynomial and plug in q = e
πi
8 and

r = −q−1

We can perform all of our quantum computations for anyons
from these categories using this expression
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