Bounds for Coefficients of the $f(q)$ Mock Theta Function and Applications to Partition Ranks

 (Part 2)
Kevin Gomez

Texas A\&M University REU 2020

July 21, 2020

Partitions of even/odd rank

We utilize our effective bound on $\alpha(n)$ to resolve the following conjecture:

Conjecture (Hou and Jagadeesan [2], 2017)
If $r=0$ (resp. $r=1$), then we have that

$$
N(r, 2 ; a) N(r, 2 ; b)>N(r, 2 ; a+b)
$$

for all $a, b \geq 11$ (resp 12).
Hou and Jagadeesan demonstrated a similar result for the modulo-three rank-counting functions $N(r, 3 ; n)$ for $r=0,1,2$, but their methods do not work modulo two.

Growth of $N(r, 2 ; n)$

Theorem (Gomez-Zhu)

For $n \geq 4$,

$$
N(r, 2 ; n)=\frac{H(n)}{36 /(n)^{2}}\left(1-\frac{1}{I(n)}\right)+(-1)^{r} R_{2}(n)
$$

where $H(n):=\pi^{2} \sqrt{3} e^{\prime(n)}$ and

$$
\left|R_{2}(n)\right| \leq\left(8.17 \times 10^{30}\right) e^{l(n) / 2}
$$

Growth of $N(r, 2 ; n)$

We will make use of an effective bound on the partition function due to Lehmer:

Theorem (Lehmer, 1938)

For all $n \geq 1$,

$$
p(n)=\frac{2 \sqrt{3}}{24 n-1}\left(1-\frac{1}{l(n)}\right) e^{l(n)}+E_{p}(n)
$$

where $\left|E_{p}(n)\right| \leq(1313) e^{l(n) / 2}$.

We substitute the asymptotic formulas for $p(n)$ and $\alpha(n)$ into the relation

$$
N(r, 2 ; n)=\frac{p(n)+(-1)^{r} \alpha(n)}{2}
$$

and then bound the resulting error

$$
R_{2}(n):=(-1)^{n-1} \frac{\pi}{\sqrt{6} /(n)} e^{l(n) / 2}+\frac{1}{2}\left(E_{p}(n)+E(n)\right)
$$

Bounding $N(r, 2 ; n)$

We will use the previous theorem to prove the following crucial inequalities:

Lemma (Gomez-Zhu)
For $r=0$ (resp. $r=1$), we have that

$$
\frac{H(n)}{36 I(n)^{2}}\left(1-\frac{1}{l(n)}\right)^{2}<N(r, 2 ; n)<\frac{H(n)}{36 I(n)^{2}}\left(1-\frac{1}{l(n)^{2}}\right)
$$

for all $n \geq 16$ (resp. 15).
This lemma places $N(r, 2 ; n)$ into a "nice" window, one which we manipulate to resolve the conjecture.

By our previous theorem,

$$
\frac{H(n)}{36 /(n)^{2}}\left(1-\frac{1}{l(n)}\right)-\left|R_{2}(n)\right|<N(r, 2 ; n)
$$

and

$$
N(r, 2 ; n)<\frac{H(n)}{36 /(n)^{2}}\left(1-\frac{1}{l(n)}\right)+\left|R_{2}(n)\right| .
$$

Thus, we can bound $N(r, 2 ; n)$ for large enough n

$$
\frac{H(n)}{36 I(n)^{2}}\left(1-\frac{1}{l(n)}\right)^{2}<N(r, 2 ; n)<\frac{H(n)}{36 l(n)^{2}}\left(1-\frac{1}{l(n)^{2}}\right)
$$

so long as the coefficient of $e^{l(n)}$ bounding $\left|R_{2}(n)\right|$ is not too large.

How large is too large? Given that $\left|R_{2}(n)\right| \leq\left(8.17 \times 10^{30}\right) e^{\prime(n)}$, we need n large enough to satisfy

$$
8.17 \times 10^{30}<\frac{\pi^{2} \sqrt{3}}{36 /(n)^{3}}\left(1-\frac{1}{l(n)}\right) e^{l(n) / 2}
$$

Computation shows that $n>4647$ will do, but we require our bounds to hold for significantly smaller n to resolve the conjecture.

We thus analyze the remaining $n<4647$ using the Online Encyclopedia of Integer Sequences, which contains the values of $p(n)$ and $\alpha(n)$ for $1 \leq n \leq 10^{4}$, and find that $N(r, 2 ; n)$ falls into our window for $n \geq 15$ when $r=0$ (resp. $n \geq 16$ when $r=1$).

We now prove the complete conjecture. Assume $16 \leq a \leq b$ and let $b=C a$ where $C \geq 1$. We have just demonstrated that
$N(r, 2 ; a) N(r, 2 ; C a)>\frac{H(a) H(C a)}{1296 /(a)^{2} I(C a)^{2}}\left(1-\frac{1}{l(a)}\right)^{2}\left(1-\frac{1}{l(C a)}\right)^{2}$
and

$$
N(r, 2 ; a+C a)<\frac{H(a+C a)}{36 /(a+C a)^{2}}\left(1-\frac{1}{l(a+C a)^{2}}\right) .
$$

Thus, we need only find a such that our lower bound for $N(r, 2 ; a) N(r, 2 ; C a)$ exceeds our upper bound for $N(r, 2 ; a+C a)$.

This is equivalent to finding a such that

$$
e^{T_{a}(C)}>\frac{12 \sqrt{3} /(a)^{2} l(C a)^{2}}{\pi^{2} l(a+C a)^{2}} S_{a}(C)
$$

where

$$
T_{a}(C):=I(a)+I(C a)-I(a+C a)
$$

and

$$
S_{a}(C):=\frac{\left(1-\frac{1}{l(a+C a)^{2}}\right)}{\left(1-\frac{1}{l(a)}\right)^{2}\left(1-\frac{1}{l\left(C_{a}\right)}\right)^{2}}
$$

Or, taking logarithms of both sides,

$$
T_{a}(C)>\log \left(\frac{12 \sqrt{3} /(a)^{2} l(C a)^{2}}{\pi^{2} l(a+C a)^{2}}\right)+\log S_{a}(C)
$$

We first observe that, as functions of C, T_{a} is strictly increasing and S_{a} is strictly decreasing, so we need only find a which satisfy our inequality for $C=1$

$$
T_{a}(1)>\log \left(\frac{12 \sqrt{3} /(a)^{2} /(C a)^{2}}{\pi^{2} l(a+C a)^{2}}\right)+\log S_{a}(1)
$$

We then make use of the fact that $I(C a)^{2} / I(a+C a)^{2} \leq 1$ for all a since $I(a+C a)>I(C a)$ to reduce our inequality to

$$
T_{a}(1)>\log \left(\frac{12 \sqrt{3} /(a)^{2}}{\pi^{2}}\right)+\log S_{a}(1)
$$

Proving the Conjecture

For which a is this final relation true? We calculate $T_{a}(1)$ and $S_{a}(1)$ and find that $a \geq 16$ suffice, and thus the conjecture is proven for such $a, b \geq 16$.

The remaining cases of $11 \leq a, b \leq 15$ (resp. $12 \leq a, b \leq 15$) for $r=0$ (resp. $r=1$) are then checked manually by comparing $N(r, 2 ; a), N(r, 2 ; b)$, and $N(r, 2 ; a+b)$.

With this result, we might ask if we can obtain similar convexity results for other moduli? That is, do we have, for $t>3$ and $0 \leq r<t$,

$$
N(r, t ; a) N(r, t ; b)>N(r, t ; a+b)
$$

for all $a, b \geq C(t)$, where $C(t)>0$ is an explicit constant depending only on the modulus t ?

If we were able to find finite algebraic formulas describing $N(r, t ; n)$ analogous to ours for larger t, this conjecture would be resolved as in the case of $t=2$. However, no such formulas are yet known.

Thank you to Dr. Masri, Dr. Young, Agniva Dasgupta, and Narrisara Khoachim for their assistance and contributions to this work. Thank you also to Dr. Shiu, the REU faculty, and the NSF for making this REU possible.
[1] C. Bessenrodt and K. Ono, Maximal multiplicative properties of partitions, Annals of Combinatorics 20 (2016) 59-64.
[2] E. Hou and M. Jagadeesan, Dyson's partition ranks and their multiplicative extensions. Ramanujan J. 45 (2018) 817-839.
[3] M. Locus Dawsey and R. Masri, Effective bounds for the Andrews spt-function. Forum Mathematicum 31 (2019) 743-767.

