Patterns arising in the Kernel of Generalized Dedekind Sums (Part 2)

Evuilynn Nguyen Rhodes College

Juan Ramirez
University of Houston

Dedekind Sum

Congruence Subgroups

$\Gamma_{0}\left(q_{1} q_{2}\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0\left(\bmod q_{1} q_{2}\right)\right\}$
$\Gamma_{1}\left(q_{1} q_{2}\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0\left(\bmod q_{1} q_{2}\right), a \equiv d \equiv 1\left(\bmod q_{1} q_{2}\right)\right\}$
Let χ_{1}, χ_{2} be non-trivial primitive Dirichlet characters modulo q_{1} and q_{2}, respectively, such that $q_{1}, q_{2}>1$ and $\chi_{1} \chi_{2}(-1)=-1$. The generalized Dedekind sum is

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{1}, \chi_{2}}(a, c)=\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \overline{\chi_{2}}(j) \overline{\chi_{1}}(n) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)
$$

where $\gamma \in \Gamma_{0}\left(q_{1} q_{2}\right)$.

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z} .
$$

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z}
$$

Proof.

For $\gamma=\left(\begin{array}{cc}1 & 0 \\ c^{\prime} q_{1} q_{2} & 1\end{array}\right)$, let $\gamma^{\prime}=\left(\begin{array}{cc}1 & -c^{\prime} \\ 0 & 1\end{array}\right)$. Then if χ_{1}, χ_{2} are even, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)
$$

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z}
$$

Proof.

For $\gamma=\left(\begin{array}{cc}1 & 0 \\ c^{\prime} q_{1} q_{2} & 1\end{array}\right)$, let $\gamma^{\prime}=\left(\begin{array}{cc}1 & -c^{\prime} \\ 0 & 1\end{array}\right)$. Then if χ_{1}, χ_{2} are even, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)
$$

If χ_{1}, χ_{2} are odd, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=-S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)+(1-\psi(\gamma))\left(\frac{\tau\left(\bar{\chi}_{1}\right) \tau\left(\bar{\chi}_{2}\right)}{(\pi i)^{2}}\right) L\left(1, \chi_{1}\right) L\left(1, \chi_{2}\right) .
$$

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z}
$$

Proof.
For $\gamma=\left(\begin{array}{cc}1 & 0 \\ c^{\prime} q_{1} q_{2} & 1\end{array}\right)$, let $\gamma^{\prime}=\left(\begin{array}{cc}1 & -c^{\prime} \\ 0 & 1\end{array}\right)$. Then if χ_{1}, χ_{2} are even, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)
$$

If χ_{1}, χ_{2} are odd, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=-S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)+{\xrightarrow{(1-\psi(\gamma))\left(\frac{\tau\left(\bar{\chi}_{1}\right) \tau\left(\bar{\chi}_{2}\right)}{(\pi i)^{2}}\right) L\left(1, \chi_{1}\right) L\left(1, \chi_{2}\right) .} 0 .}_{0}^{0}
$$

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z}
$$

Figure: $\chi_{1} \bmod 5 \& \chi_{3} \bmod 11$

Known points in Kernel: $(1, N)$

Proposition

$$
S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0 \text { for all } c^{\prime} \in \mathbb{Z}
$$

Figure: $\chi_{1} \bmod 5 \& \chi_{3} \bmod 11$

Known points in Kernel: $(c-a, c)$

Proposition

For every (a, c) in the kernel, $(c-a, c)$ is also in the kernel.

Figure: $\chi_{1} \bmod 5 \& \chi_{3} \bmod 11$

Known points in Kernel: $(c-a, c)$

Proposition

For every (a, c) in the kernel, $(c-a, c)$ is also in the kernel.

Figure: $\chi_{1} \bmod 5 \& \chi_{3} \bmod 11$

Commutator Subgroup

Definition:

The commutator subgroup C of group G is the subgroup generated by $\left\{g h g^{-1} h^{-1}: \forall g, h \in G\right\}$ and is denoted [G:G].

Commutator Subgroup

Definition:

The commutator subgroup C of group G is the subgroup generated by $\left\{g h g^{-1} h^{-1}: \forall g, h \in G\right\}$ and is denoted $[G: G]$.

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subseteq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$

Commutator Subgroup

Definition:

The commutator subgroup C of group G is the subgroup generated by $\left\{g h g^{-1} h^{-1}: \forall g, h \in G\right\}$ and is denoted $[G: G]$.

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subsetneq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$

Commutator Subgroup

Definition:

The commutator subgroup C of group G is the subgroup generated by $\left\{g h g^{-1} h^{-1}: \forall g, h \in G\right\}$ and is denoted [G:G].

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subsetneq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$
- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subseteq \Gamma_{1}\left(N^{2}\right)$ for 2×2 matrices.

Commutator Subgroup

Definition:

The commutator subgroup C of group G is the subgroup generated by $\left\{g h g^{-1} h^{-1}: \forall g, h \in G\right\}$ and is denoted [G:G].

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subsetneq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$
- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subseteq \Gamma_{1}\left(N^{2}\right)$ for 2×2 matrices.

Ex: Consider $\Gamma_{1}(3 \times 7)=\Gamma_{1}(21)$:

$$
\Longrightarrow\left[\Gamma_{1}(21): \Gamma_{1}(21)\right] \subseteq \Gamma_{1}(441)
$$

Commutator Subgroup

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subsetneq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$
- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subseteq \Gamma_{1}\left(N^{2}\right)$ for 2×2 matrices.

Ex: Consider $\Gamma_{1}(3 \times 7)=\Gamma_{1}(21)$:
$\Longrightarrow\left[\Gamma_{1}(21): \Gamma_{1}(21)\right] \subseteq \Gamma_{1}(441)$
Recall that $(1, c)$ and $(c-1, c)$ are always in the kernel.

Commutator Subgroup

Facts

- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subsetneq \operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)$
- $\left[\Gamma_{1}(N): \Gamma_{1}(N)\right] \subseteq \Gamma_{1}\left(N^{2}\right)$ for 2×2 matrices.

Ex: Consider $\Gamma_{1}(3 \times 7)=\Gamma_{1}(21)$:
$\Longrightarrow\left[\Gamma_{1}(21): \Gamma_{1}(21)\right] \subseteq \Gamma_{1}(441)$
Recall that $(1, c)$ and $(c-1, c)$ are always in the kernel.
$\{(1,21),(20,21), \ldots,(1, c),(c-1, c): c \not \equiv 0 \bmod 441\} \not \subset \Gamma_{1}(441)$

Identical Kernels

Kernel for $\chi_{1} \bmod 3 \& \chi_{3} \bmod 11$ and $\chi_{1} \bmod 3 \& \chi_{7} \bmod 11$.

Identical Kernels

Kernel for $\chi_{1} \bmod 3 \& \chi_{3} \bmod 11$ and $\chi_{1} \bmod 3 \& \chi_{7} \bmod 11$.

\ldots and also $\chi_{1} \bmod 3 \& \chi_{9} \bmod 11$ and $\chi_{1} \bmod 3 \& \chi_{1} \bmod 11$.

Identical Kernels

Recall

For $\chi \bmod q$,

$$
\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*} .
$$

Identical Kernels

Recall

For $\chi \bmod q$,

$$
\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}
$$

Ex: Image of $\chi_{1} \bmod 5$ is $\{0\} \cup\{4$ th roots of unity $\}$

Identical Kernels

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

Identical Kernels

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

$\operatorname{Gal}(F / \mathbb{Q})=\{$ set of automorphisms of F that fixes $\mathbb{Q}\}$.

Identical Kernels

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

$\operatorname{Gal}(F / \mathbb{Q})=\{$ set of automorphisms of F that fixes $\mathbb{Q}\}$. Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$, then

$$
\sigma\left(S_{\chi_{1}, \chi_{2}}(\gamma)\right)=\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \sigma\left(\overline{\chi_{2}}(j)\right) \sigma\left(\overline{\chi_{1}}(n)\right) \sigma\left(B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)\right)
$$

Identical Kernels

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

$\operatorname{Gal}(F / \mathbb{Q})=\{$ set of automorphisms of F that fixes $\mathbb{Q}\}$.
Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$, then

$$
\begin{aligned}
\sigma\left(S_{\chi_{1}, \chi_{2}}(\gamma)\right) & =\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \sigma\left(\overline{\chi_{2}}(j)\right) \sigma\left(\overline{\chi_{1}}(n)\right) \sigma\left(B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)\right) \\
& =\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \sigma\left(\overline{\chi_{2}}(j)\right) \sigma\left(\overline{\chi_{1}}(n)\right) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)
\end{aligned}
$$

Identical Kernels

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

$\operatorname{Gal}(F / \mathbb{Q})=\{$ set of automorphisms of F that fixes $\mathbb{Q}\}$. Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$, then

$$
\begin{aligned}
\sigma\left(S_{\chi_{1}, \chi_{2}}(\gamma)\right) & =\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \sigma\left(\overline{\chi_{2}}(j)\right) \sigma\left(\overline{\chi_{1}}(n)\right) \sigma\left(B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right)\right) \\
& =\sum_{j(\bmod c)} \sum_{n\left(\bmod q_{1}\right)} \sigma\left(\overline{\chi_{2}}(j)\right) \sigma\left(\overline{\chi_{1}}(n)\right) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right) \\
& =S_{\chi_{1}^{\sigma}, \chi_{2}^{\sigma}}(\gamma) .
\end{aligned}
$$

Identical Kernels

Some Notation

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

Let $S=\operatorname{Ded}\left(q_{1}, q_{2}\right)=\left\{S_{\chi_{1}, \chi_{2}}: \chi_{1}, \chi_{2}\right.$ primitive and $\left.\chi_{1} \chi_{2}(-1)=1\right\}$. Denote $G=\operatorname{Gal}(F / \mathbb{Q})$.

Identical Kernels

Some Notation

Given $q_{1}, q_{2}>1$, let

$$
F=\mathbb{Q}\left(e^{\frac{2 \pi i}{\phi\left(q_{1}\right)}}, e^{\frac{2 \pi i}{\phi\left(q_{2}\right)}}\right) .
$$

Let $S=\operatorname{Ded}\left(q_{1}, q_{2}\right)=\left\{S_{\chi_{1}, \chi_{2}}: \chi_{1}, \chi_{2}\right.$ primitive and $\left.\chi_{1} \chi_{2}(-1)=1\right\}$. Denote $G=\operatorname{Gal}(F / \mathbb{Q})$.

If G acts on S, S breaks up into orbits:
For each $s \in S$,

$$
G \cdot s=\{g \cdot s \mid g \in G\} .
$$

Identical Kernels

*Remember that $\sigma\left(S_{\chi_{1}, \chi_{2}}\right)=S_{\chi_{1}^{\sigma}, \chi_{2}^{\sigma}}$.

Identical Kernels

*Remember that $\sigma\left(S_{\chi_{1}, \chi_{2}}\right)=S_{\chi_{1}^{\sigma}, \chi_{2}^{\sigma}}$.

Proposition

Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$. If

$$
\chi_{1}, \chi_{2}=\chi_{\alpha^{\prime}}^{\sigma}, \chi_{\beta}^{\sigma}
$$

then $S_{\chi_{1}, \chi_{2}}$ and $S_{\chi_{\alpha}, \chi_{\beta}}$ are in the same orbit and subsequently have the same kernel.

Identical Kernels

*Remember that $\sigma\left(S_{\chi_{1}, \chi_{2}}\right)=S_{\chi_{1}^{\sigma}, \chi_{2}^{\sigma}}$.

Proposition

Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$. If

$$
\chi_{1}, \chi_{2}=\chi_{\alpha}^{\sigma}, \chi_{\beta}^{\sigma}
$$

then $S_{\chi_{1}, \chi_{2}}$ and $S_{\chi_{\alpha}, \chi_{\beta}}$ are in the same orbit and subsequently have the same kernel.

For $k \in \mathbb{Z}$ such that k is coprime to $\phi\left(q_{1}\right) \phi\left(q_{2}\right)$, the map $\zeta \mapsto \zeta^{k}$ is an automorphism of F.

Identical Kernels

*Remember that $\sigma\left(S_{\chi_{1}, \chi_{2}}\right)=S_{\chi_{1}^{\sigma}, \chi_{2}^{\sigma}}$.

Proposition

Let $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$. If

$$
\chi_{1}, \chi_{2}=\chi_{\alpha}^{\sigma}, \chi_{\beta}^{\sigma}
$$

then $S_{\chi_{1}, \chi_{2}}$ and $S_{\chi_{\alpha}, \chi_{\beta}}$ are in the same orbit and subsequently have the same kernel.

For $k \in \mathbb{Z}$ such that k is coprime to $\phi\left(q_{1}\right) \phi\left(q_{2}\right)$, the map $\zeta \mapsto \zeta^{k}$ is an automorphism of F.

Consider the earlier example with mod 3 and mod 11:

- $\chi_{1}(2)=-1$ and $\chi_{1}(2)=\zeta_{10}$.
- $\chi_{1}(2)=-1$ and $\chi_{3}(2)=\zeta_{10}^{3}$

References

[1] T. Apostol, Modular Functions and Dirichlet Series in Number Theory. Graduate Text in Mathematics, 41. Springer-Verlag,
[2] T. Apostol, Introduction to Analytic Number Theory. Undergraduate Text in Mathematics
[3] T. Dillon, S. Gaston, An average of generalized Dedekind sums. Journal of Number Theory, 212, (2020) 323-338.
[4] F. Diamond, J. Shurman, A First Course in Modular Forms. Graduate Text in Mathematics, 228. Springer-Verlag, New York, 2005.
[5] T. Stucker, A. Vennos, M. P. Young, Dedekind sums arising from newform Eisenstein series. preprint

Thank You!

We would like to thank Dr. Young (Mentor), Agniva Dasgupta (TA), the organizers and TA's of the REU, Texas A\&M, and NSF!

