Patterns arising in the Kernel of Generalized Dedekind Sums (Part 2)

Evuilynn Nguyen Rhodes College Juan Ramirez University of Houston

Nguyen and Ramirez

Dedekind Sums

Dedekind Sum

Congruence Subgroups

$$\Gamma_0(q_1q_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{q_1q_2} \right\}$$

$$\Gamma_1(q_1q_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{q_1q_2}, a \equiv d \equiv 1 \pmod{q_1q_2} \right\}$$

Let χ_1, χ_2 be non-trivial primitive Dirichlet characters modulo q_1 and q_2 , respectively, such that $q_1, q_2 > 1$ and $\chi_1\chi_2(-1) = -1$. The **generalized Dedekind sum** is

$$S_{\chi_1,\chi_2}(\gamma) = S_{\chi_1,\chi_2}(a,c) = \sum_{j \pmod{c} n \pmod{q_1}} \overline{\chi_2}(j) \ \overline{\chi_1}(n) \ B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$

where $\gamma \in \Gamma_0(q_1q_2)$.

Proposition

$$S_{\chi_1,\chi_2}(1,c'q_1q_2)=0$$
 for all $c'\in\mathbb{Z}$.

Nguyen and Ramirez

Proposition

$$S_{\chi_1,\chi_2}(1,c'q_1q_2)=0$$
 for all $c'\in\mathbb{Z}$.

Proof.

For
$$\gamma = \begin{pmatrix} 1 & 0 \\ c'q_1q_2 & 1 \end{pmatrix}$$
, let $\gamma' = \begin{pmatrix} 1 & -c' \\ 0 & 1 \end{pmatrix}$. Then if χ_1, χ_2 are even, then
$$S_{\chi_1,\chi_2}(\gamma) = S_{\chi_2,\chi_1}(\gamma').$$

Proposition

$$S_{\chi_1,\chi_2}(1,c'q_1q_2)=0$$
 for all $c'\in\mathbb{Z}$.

Proof.

For
$$\gamma = \begin{pmatrix} 1 & 0 \\ c'q_1q_2 & 1 \end{pmatrix}$$
, let $\gamma' = \begin{pmatrix} 1 & -c' \\ 0 & 1 \end{pmatrix}$. Then if χ_1, χ_2 are even, then
$$S_{\chi_1,\chi_2}(\gamma) = S_{\chi_2,\chi_1}(\gamma').$$

If χ_1, χ_2 are odd, then

$$S_{\chi_1,\chi_2}(\gamma) = -S_{\chi_2,\chi_1}(\gamma') + (1-\psi(\gamma)) \left(\frac{\tau(\overline{\chi}_1)\tau(\overline{\chi}_2)}{(\pi i)^2}\right) L(1,\chi_1)L(1,\chi_2).$$

Proposition

$$S_{\chi_1,\chi_2}(1,c'q_1q_2)=0$$
 for all $c'\in\mathbb{Z}$.

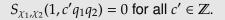
Proof.

For
$$\gamma = \begin{pmatrix} 1 & 0 \\ c'q_1q_2 & 1 \end{pmatrix}$$
, let $\gamma' = \begin{pmatrix} 1 & -c' \\ 0 & 1 \end{pmatrix}$. Then if χ_1, χ_2 are even, then
$$S_{\chi_1,\chi_2}(\gamma) = S_{\chi_2,\chi_1}(\gamma').$$

If χ_1, χ_2 are odd, then

$$S_{\chi_1,\chi_2}(\gamma) = -S_{\chi_2,\chi_1}(\gamma') + (1 - \psi(\gamma)) \left(\frac{\tau(\overline{\chi}_1)\tau(\overline{\chi}_2)}{(\pi i)^2}\right) L(1,\chi_1)L(1,\chi_2).$$

Proposition



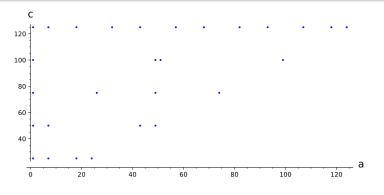
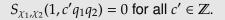


Figure: $\chi_1 \mod 5 \& \chi_3 \mod 11$

Nguy	/en	and	Ramir	ez

Proposition



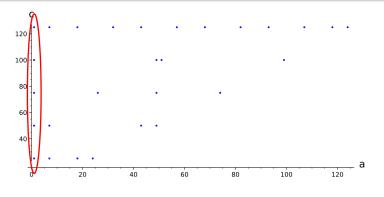


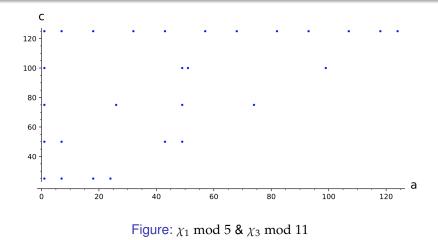
Figure: $\chi_1 \mod 5 \& \chi_3 \mod 11$

Nguy	en a	nd Ra	amirez
------	------	-------	--------

Known points in Kernel: (c - a, c)

Proposition

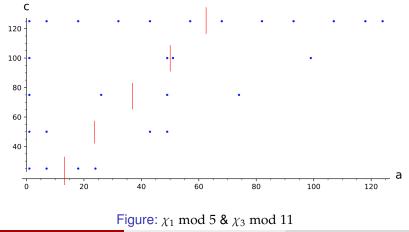
For every (a, c) in the kernel, (c - a, c) is also in the kernel.



Known points in Kernel: (c - a, c)

Proposition

For every (a, c) in the kernel, (c - a, c) is also in the kernel.



Nguyen and Ramirez

Dedekind Sums

Definition:

The commutator subgroup C of group G is the subgroup generated by $\{ghg^{-1}h^{-1}: \forall g, h \in G\}$ and is denoted [G:G].

Definition:

The commutator subgroup C of group G is the subgroup generated by $\{ghg^{-1}h^{-1}: \forall g, h \in G\}$ and is denoted [G:G].

Facts

• $[\Gamma_1(N) : \Gamma_1(N)] \subseteq \ker(S_{\chi_1,\chi_2})$

Definition:

The commutator subgroup C of group G is the subgroup generated by $\{ghg^{-1}h^{-1}: \forall g, h \in G\}$ and is denoted [G:G].

Facts

• $[\Gamma_1(N) : \Gamma_1(N)] \subsetneq \ker(S_{\chi_1,\chi_2})$

Definition:

The commutator subgroup C of group G is the subgroup generated by $\{ghg^{-1}h^{-1}: \forall g, h \in G\}$ and is denoted [G:G].

Facts

- $[\Gamma_1(N) : \Gamma_1(N)] \subsetneq \ker(S_{\chi_1,\chi_2})$
- $[\Gamma_1(N) : \Gamma_1(N)] \subseteq \Gamma_1(N^2)$ for 2x2 matrices.

Definition:

The commutator subgroup C of group G is the subgroup generated by $\{ghg^{-1}h^{-1}: \forall g, h \in G\}$ and is denoted [G:G].

Facts

- $[\Gamma_1(N) : \Gamma_1(N)] \subsetneq \ker(S_{\chi_1,\chi_2})$
- $[\Gamma_1(N) : \Gamma_1(N)] \subseteq \Gamma_1(N^2)$ for 2x2 matrices.

Ex: Consider $\Gamma_1(3 \times 7) = \Gamma_1(21)$:

 $\implies [\Gamma_1(21):\Gamma_1(21)] \subseteq \Gamma_1(441)$

Facts

- $[\Gamma_1(N) : \Gamma_1(N)] \subsetneq \ker(S_{\chi_1,\chi_2})$
- $[\Gamma_1(N) : \Gamma_1(N)] \subseteq \Gamma_1(N^2)$ for 2x2 matrices.

Ex: Consider $\Gamma_1(3 \times 7) = \Gamma_1(21)$:

 $\implies [\Gamma_1(21):\Gamma_1(21)] \subseteq \Gamma_1(441)$

Recall that (1, c) and (c - 1, c) are always in the kernel.

Facts

- $[\Gamma_1(N) : \Gamma_1(N)] \subsetneq \ker(S_{\chi_1,\chi_2})$
- $[\Gamma_1(N) : \Gamma_1(N)] \subseteq \Gamma_1(N^2)$ for 2x2 matrices.

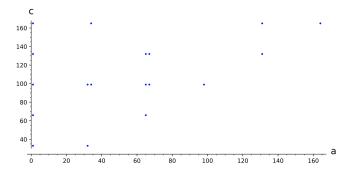
Ex: Consider $\Gamma_1(3 \times 7) = \Gamma_1(21)$:

 $\implies [\Gamma_1(21):\Gamma_1(21)] \subseteq \Gamma_1(441)$

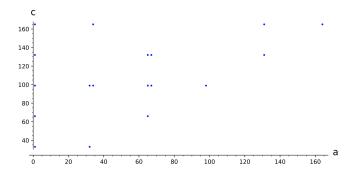
Recall that (1, c) and (c - 1, c) are always in the kernel.

 $\{(1,21),(20,21),...,(1,c),(c-1,c):c\not\equiv 0 \bmod 441\} \not\subset \Gamma_1(441)$

Kernel for $\chi_1 \mod 3 \& \chi_3 \mod 11$ and $\chi_1 \mod 3 \& \chi_7 \mod 11$.



Kernel for $\chi_1 \mod 3 \& \chi_3 \mod 11$ and $\chi_1 \mod 3 \& \chi_7 \mod 11$.



...and also $\chi_1 \mod 3 \& \chi_9 \mod 11$ and $\chi_1 \mod 3 \& \chi_1 \mod 11$.

Recall

For $\chi \mod q$,

 $\chi: (\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*.$

Recall

For $\chi \mod q$,

$$\chi: (\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*.$$

Ex: Image of $\chi_1 \mod 5$ is $\{0\} \cup \{4\text{th roots of unity}\}\$

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

 $Gal(F/\mathbb{Q}) = \{set of automorphisms of F that fixes \mathbb{Q}\}.$

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

 $Gal(F/\mathbb{Q}) = \{set of automorphisms of F that fixes \mathbb{Q}\}.$ Let $\sigma \in Gal(F/\mathbb{Q})$, then

$$\sigma\left(S_{\chi_1,\chi_2}(\gamma)\right) = \sum_{j \pmod{c} n \pmod{q_1}} \sigma(\overline{\chi_2}(j)) \ \sigma(\overline{\chi_1}(n)) \ \sigma\left(B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)\right)$$

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

 $Gal(F/\mathbb{Q}) = \{set of automorphisms of F that fixes \mathbb{Q}\}.$ Let $\sigma \in Gal(F/\mathbb{Q})$, then

$$\sigma\left(S_{\chi_1,\chi_2}(\gamma)\right) = \sum_{j \pmod{c} n \pmod{q_1}} \sum_{\sigma(\overline{\chi_2}(j)) \sigma(\overline{\chi_1}(n)) \sigma\left(B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)\right)$$
$$= \sum_{j \pmod{c} n \pmod{q_1}} \sum_{\sigma(\overline{\chi_2}(j)) \sigma(\overline{\chi_1}(n)) B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

 $Gal(F/\mathbb{Q}) = \{set of automorphisms of F that fixes \mathbb{Q}\}.$ Let $\sigma \in Gal(F/\mathbb{Q})$, then

$$\sigma\left(S_{\chi_1,\chi_2}(\gamma)\right) = \sum_{j \pmod{c}} \sum_{n \pmod{q_1}} \sigma(\overline{\chi_2}(j)) \ \sigma(\overline{\chi_1}(n)) \ \sigma\left(B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)\right)$$
$$= \sum_{j \pmod{c}} \sum_{n \pmod{q_1}} \sigma(\overline{\chi_2}(j)) \ \sigma(\overline{\chi_1}(n)) \ B_1\left(\frac{j}{c}\right) B_1\left(\frac{n}{q_1} + \frac{aj}{c}\right)$$
$$= S_{\chi_1^\sigma,\chi_2^\sigma}(\gamma).$$

Nguyen and Ramirez

Some Notation

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

Let $S = \text{Ded}(q_1, q_2) = \{S_{\chi_1, \chi_2} : \chi_1, \chi_2 \text{ primitive and } \chi_1 \chi_2(-1) = 1\}.$ Denote $G = \text{Gal}(F/\mathbb{Q}).$

Some Notation

Given $q_1, q_2 > 1$, let

$$F = \mathbb{Q}\left(e^{\frac{2\pi i}{\phi(q_1)}}, e^{\frac{2\pi i}{\phi(q_2)}}\right).$$

Let $S = \text{Ded}(q_1, q_2) = \{S_{\chi_1, \chi_2} : \chi_1, \chi_2 \text{ primitive and } \chi_1 \chi_2(-1) = 1\}.$ Denote $G = \text{Gal}(F/\mathbb{Q}).$

If *G* acts on *S*, *S* breaks up into orbits: For each $s \in S$,

$$G \cdot s = \{g \cdot s \mid g \in G\}.$$

*Remember that $\sigma(S_{\chi_1,\chi_2}) = S_{\chi_1^{\sigma},\chi_2^{\sigma}}$.

Results

Identical Kernels

*Remember that
$$\sigma(S_{\chi_1,\chi_2}) = S_{\chi_1^{\sigma},\chi_2^{\sigma}}$$
.

Proposition

Let $\sigma \in \text{Gal}(F/\mathbb{Q})$. If

$$\chi_1, \chi_2 = \chi^{\sigma}_{\alpha}, \chi^{\sigma}_{\beta}$$

then S_{χ_1,χ_2} and $S_{\chi_{\alpha,\chi_{\beta}}}$ are in the same orbit and subsequently have the same kernel.

Results

Identical Kernels

*Remember that
$$\sigma(S_{\chi_1,\chi_2}) = S_{\chi_1^{\sigma},\chi_2^{\sigma}}$$
.

Proposition

Let $\sigma \in \text{Gal}(F/\mathbb{Q})$. If

$$\chi_1, \chi_2 = \chi^{\sigma}_{\alpha}, \chi^{\sigma}_{\beta}$$

then S_{χ_1,χ_2} and $S_{\chi_{\alpha,\chi_{\beta}}}$ are in the same orbit and subsequently have the same kernel.

For $k \in \mathbb{Z}$ such that k is coprime to $\phi(q_1)\phi(q_2)$, the map $\zeta \mapsto \zeta^k$ is an automorphism of *F*.

Results

Identical Kernels

*Remember that $\sigma(S_{\chi_1,\chi_2}) = S_{\chi_1^{\sigma},\chi_2^{\sigma}}$.

Proposition

Let $\sigma \in \text{Gal}(F/\mathbb{Q})$. If

$$\chi_1, \chi_2 = \chi^{\sigma}_{\alpha}, \chi^{\sigma}_{\beta}$$

then S_{χ_1,χ_2} and $S_{\chi_{\alpha,\chi_{\beta}}}$ are in the same orbit and subsequently have the same kernel.

For $k \in \mathbb{Z}$ such that k is coprime to $\phi(q_1)\phi(q_2)$, the map $\zeta \mapsto \zeta^k$ is an automorphism of *F*.

Consider the earlier example with mod 3 and mod 11:

•
$$\chi_1(2) = -1$$
 and $\chi_1(2) = \zeta_{10}$.

•
$$\chi_1(2) = -1$$
 and $\chi_3(2) = \zeta_{10}^3$

References

[1] T. Apostol, *Modular Functions and Dirichlet Series in Number Theory.* Graduate Text in Mathematics, 41. Springer-Verlag,

End

- [2] T. Apostol, *Introduction to Analytic Number Theory.* Undergraduate Text in Mathematics
- [3] T. Dillon, S. Gaston, *An average of generalized Dedekind sums.* Journal of Number Theory, 212, (2020) 323-338.
- [4] F. Diamond, J. Shurman, A First Course in Modular Forms. Graduate Text in Mathematics, 228. Springer-Verlag, New York, 2005.
- [5] T. Stucker, A. Vennos, M. P. Young, *Dedekind sums arising from newform Eisenstein series*. preprint

Thank You!

End

We would like to thank Dr. Young (Mentor), Agniva Dasgupta (TA), the organizers and TA's of the REU, Texas A&M, and NSF!