Bounds for Coefficients of the f(q) Mock Theta Function and Applications to Partition Ranks (Part 1)

Eric Zhu

Texas A&M University REU 2020

July 21, 2020

Eric Zhu Bounds for Coefficients of the f(q) Mock Theta Function

Definition

A **partition** of a positive integer *n* is a multiset $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$ of positive integers such that

• $0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$.

•
$$\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$$
.

We define the **rank** of this partition as $\lambda_k - k$.

.

Let $N_e(n)$ and $N_o(n)$ be the number of partitions of n with even and odd rank, respectively.

Conjecture (Hou and Jagadeesan [2], 2017)

- If $a, b \ge 11$, then $N_e(a)N_e(b) > N_e(a+b)$.
- If $a, b \ge 12$, then $N_o(a)N_o(b) > N_o(a+b)$.

A result of Ramanujan relates the difference of these functions to the Ramanujan mock theta function

$$f(q) = 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2 \cdots (1+q^n)^2}$$

= 1 + $\sum_{n=1}^{\infty} (N_e(n) - N_o(n))q^n = \sum_{n=0}^{\infty} \alpha(n)q^n$

• • = • • = •

A remarkable theorem of Bringmann and Ono [4] shows that

$$\alpha(n) = \pi (24n-1)^{-\frac{1}{4}} \sum_{k=1}^{\infty} \frac{(-1)^{\lfloor \frac{k+1}{2} \rfloor} A_{2k} \left(n - \frac{k(1+(-1)^k)}{4}\right)}{k}$$
$$\cdot I_{\frac{1}{2}} \left(\frac{\pi \sqrt{24n-1}}{12k}\right)$$

However, it is difficult to bound this formula since the sum does **not** converge absolutely.

Theorem (Gomez-Zhu)

Let $D_n = -24n + 1$ and let $l(n) = \pi \sqrt{|D_n|}/6$. Then for all $n \ge 1$,

$$\alpha(n) = (-1)^{n+1} \frac{\pi}{\sqrt{6}I(n)} e^{I(n)/2} + E(n)$$

where

$$|E(n)| < (4.30 \times 10^{23})2^{q(n)}|D_n|^2 e^{l(n)/3}$$

with

$$q(n) := rac{\log(|D_n|)}{|\log \log(|D_n|) - 1.1714|}.$$

< 同 > < 三 > < 三 >

A positive definite binary quadratic form is a function of the form $Q(X, Y) = aX^2 + bXY + cY^2$ for integers a, b, c with a > 0.

The discriminant of this form is $D = b^2 - 4ac$ and we call the form primitive if gcd(a, b, c) = 1.

We define $Q_{D,N}$ as the set of quadratic forms with discriminant D < 0, $a \equiv 0 \pmod{N}$ and $b \equiv 1 \pmod{2N}$. Furthermore, we define $Q_{D,N}^{\text{prim}}$ as the subset of $Q_{D,N}$ that consists of primitive forms.

We define the congruence subgroup of $SL_2(\mathbb{Z})$

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : c \equiv 0 \pmod{N} \right\}.$$

The group $\Gamma_0(N)$ acts on $\mathcal{Q}_{D,N}$ with the set of orbits $\mathcal{Q}_{D,N}/\Gamma_0(N)$ and similarly acts on $\mathcal{Q}_{D,N}^{\text{prim}}$ with the set of orbits $\mathcal{Q}_{D,N}^{\text{prim}}/\Gamma_0(N)$. The number of orbits in this last set is denoted by the class number h(D).

To each form $Q \in Q_{D,N}$, we can associate its *Heegner point* τ_Q which is the root of Q(X, 1) with positive imaginary part.

The Brunier-Schwagenscheidt Formula

Consider the modular form:

$$F(z) = q^{-1} - 4 - 83q - 296q^2 + \dots = \sum_{n=-1}^{\infty} a(n)q^n$$

where $q := e^{2\pi i z}$.

Theorem (Brunier-Schwagenscheidt)

For $n \ge 1$, we have

$$\alpha(n) = -\frac{1}{\sqrt{|D_n|}} \operatorname{Im}(S(n))$$

where

$$S(n) = \sum_{[Q] \in \mathcal{Q}_{D_n,6}/\Gamma_0(6)} F(\tau_Q).$$

▲白(マ) ▲ 三 ▶

< ⇒ >

Now, we decompose the function into

$$S(n) = \sum_{\substack{[Q] \in \mathcal{Q}_{D_{n},6}/\Gamma_{0}(6) \\ = \sum_{\substack{u > 0 \\ u^{2}|D_{n}}} \varepsilon(u) \sum_{\substack{[Q] \in \mathcal{Q}_{D_{n}/u^{2},6}^{\mathsf{prim}}} F(\gamma_{Q}(\tau_{Q}))$$

where $\varepsilon(u) = \pm 1$ and γ_Q are certain right coset representatives of $\Gamma_0(6)$ in $SL_2(\mathbb{Z})$.

伺 と く ヨ と く ヨ と

We find the fourier expansion of F(z) as

$$F(\gamma_Q(z)) = \zeta_Q e(-z/h_Q) - 4\beta(h_Q) + \sum_{n=1}^{\infty} \phi_{n,Q} a(n) e(nz/h_Q)$$

where ζ_Q and $\phi_{n,Q}$ are specific sixth roots of unity, $h_Q \in \{1, 2, 3, 6\}$, and $\beta(h_Q) = \pm 1$. We split this sum up into a main term and an error term as

$$S(n) = \sum_{\substack{u>0\\u^2\mid D_n}} \varepsilon(u) \sum_{\substack{Q\in \mathcal{Q}_{D_n/u^2,6}^{\text{prim}}}} F(\gamma_Q(\tau_Q))$$
$$= \sum_{\substack{Q\in \mathcal{Q}_{D_n,6}^{\text{prim}}}} \zeta_Q e(-\tau_Q/h_Q) + E_1(n) + E_2(n).$$

Now, we can analyze the main term, which is a finite sum to get

$$S(n) = (-1)^n i \sqrt{6} \exp(\pi \sqrt{|D_n|}/12) + E_1(n) + E_2(n) + E_3(n).$$

∃ ► < ∃ ►</p>

Bounding the Error Term

The error terms earlier are given by:

$$E_1(n) := \sum_{\substack{u>1\\ u^2|D_n}} \varepsilon(u) \sum_{Q \in \mathcal{Q}_{D_n/u^2,6}^{\text{prim}}} \zeta_Q e(-\tau_Q/h_Q),$$

$$\begin{split} E_2(n) &:= 4\beta(h_Q) \sum_{\substack{u>0\\u^2|D_n}} \varepsilon(u)h(D_n/u^2) + \sum_{n=1}^{\infty} \sum_{\substack{u>0\\u^2|D_n}} \varepsilon(u)\phi_{n,Q}a(n)e(n\tau_Q/h_Q), \\ E_3(n) &:= \sum_{\substack{Q \in \mathcal{Q}_{D_n,6}\\a_Qh_Q \ge 18}} \zeta_Q e(-\tau_Q/h_Q). \end{split}$$

-

The functions $E_1(n)$ and $E_3(n)$ are bounded by the same techniques as for the main term.

• • = • • = •

$$E_2(n) := 4\beta(h_Q) \sum_{\substack{u>0\\ u^2|D_n}} \varepsilon(u)h(D_n/u^2) + \sum_{n=1}^{\infty} \sum_{\substack{u>0\\ u^2|D_n}} \varepsilon(u)\phi_{n,Q}a(n)e(n\tau_Q/h_Q).$$

Proposition (Gomez-Zhu)

For all $n \geq 1$,

$$|a(n)| \leq C e^{4\pi\sqrt{n}}$$
 where $C := 8\sqrt{6}\pi^{3/2} + 16\pi^2\zeta^2(3/2)$

イロト イヨト イヨト イヨト

2

Theorem (Gomez-Zhu)

Let $D_n = -24n + 1$ and let $l(n) = \pi \sqrt{|D_n|}/6$. Then for all $n \ge 1$,

$$\alpha(n) = (-1)^{n+1} \frac{\pi}{\sqrt{6}I(n)} e^{I(n)/2} + E(n)$$

where

$$|E(n)| < (4.30 \times 10^{23})2^{q(n)}|D_n|^2 e^{l(n)/3}$$

with

$$q(n) := rac{\log(|D_n|)}{|\log \log(|D_n|) - 1.1714|}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- C. Bessenrodt and K. Ono, *Maximal multiplicative properties* of partitions, Annals of Combinatorics **20** (2016) 59–64.
- [2] E. Hou and M. Jagadeesan, *Dyson's partition ranks and their multiplicative extensions*. Ramanujan J. 45 (2018) 817-839.
- [3] M. Locus Dawsey and R. Masri, *Effective bounds for the Andrews spt-function*. Forum Mathematicum **31** (2019) 743-767.
- [4] K. Bringmann and K. Ono, *The f(q) mock theta function conjecture and partition ranks*. Invent. Math. **165** (2006), pages 243-266.

伺 と く ヨ と く ヨ と …