Wavelet Sets in \mathbb{R}^2
Bill Finkenkeller, Texas A&M University
Chelsea Kaihoi, Iowa State University

A subset E of \mathbb{R} is a wavelet set if and only if $\{E+2\pi n | n \text{ an integer}\}$ is a measurable partition of \mathbb{R} and $\{2^n E | n \text{ an integer}\}$ is a 2-dilation “tiler” of \mathbb{R} (modulo Lebesgue null sets). This can be generalized to \mathbb{R}^2 (using the matrix $2I$ as the dilation factor and $2\pi(l,m)$, where l and m are integers, for the translation component). We will show a few examples of connected wavelet sets in \mathbb{R}^2 as well as explore the existence of wavelet sets in \mathbb{R}^2 which are composed of a finite number of rectangles.