"The Cross-Over and Patch Algorithms for Wavelet Sets in \mathbb{R}^2"

by

A.J. Hergenroeder, Zach Catlin and Brandon George

Abstract: We have two algorithms to generate classes of wavelet sets in \mathbb{R}^2: The crossover algorithm and the patch algorithm.

Using any partition of the inner square, $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, into four pieces $X_\oplus, X_\ominus, Y_\oplus, Y_\ominus \subseteq \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ such that X_\oplus is in the right half-inner square, X_\ominus is in the left half-inner square, Y_\oplus is in the upper half-inner square and Y_\ominus is in the lower half-inner square, our crossover algorithm generates a wavelet set in \mathbb{R}^2. We have results for the patch wavelet model as well.