Zeros of Eisenstein Series
Arising from Dirichlet Characters

Thomas Brazelton, Victoria Jakicic, Dr. Young

July 18, 2017
Acknowledgements

- Dr. Young
- Victoria Jakicic
- Texas A&M Mathematics Dept.
- National Science Foundation
The special linear group of degree 2 with coefficients in \(\mathbb{Z} \), denoted \(\text{SL}_2(\mathbb{Z}) \) is defined as

\[
\text{SL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}
\]
The **special linear group** of degree 2 with coefficients in \(\mathbb{Z} \), denoted \(\text{SL}_2(\mathbb{Z}) \) is defined as

\[
\text{SL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}
\]

An important subgroup is the **Hecke congruence subgroup of level \(N \)** of \(\text{SL}_2(\mathbb{Z}) \), defined as

\[
\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}.
\]
The **special linear group** of degree 2 with coefficients in \mathbb{Z}, denoted $\text{SL}_2(\mathbb{Z})$ is defined as

$$\text{SL}_2(\mathbb{Z}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, \ ad - bc = 1 \right\}$$

An important subgroup is the **Hecke congruence subgroup of level N** of $\text{SL}_2(\mathbb{Z})$, defined as

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}.$$

Let \mathcal{H} denote the upper half-plane

$$\mathcal{H} = \{ x + iy \in \mathbb{C} : y > 0 \}.$$
We can see that $\text{SL}_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z) := \frac{az + b}{cz + d}.$$
We can see that $SL_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z) := \frac{az + b}{cz + d}.$$

From this action, we can pick a coset representative of each orbit.
We can see that $SL_2(\mathbb{Z})$ acts on \mathcal{H} by the following:

$$\gamma(z) := \frac{az + b}{cz + d}.$$

From this action, we can pick a coset representative of each orbit.

The **fundamental domain** $\mathcal{F} = SL_2(\mathbb{Z}) \backslash \mathcal{H}$ is shown as
A map $f : \mathcal{H} \to \mathbb{C}$ is called a **modular form** of weight k if
1) f is holomorphic on \mathcal{H}
2) $\lim_{\text{Im}(z) \to \infty} f(z)$ exists
3) f is "weakly modular of weight $k"
A map $f : \mathcal{H} \to \mathbb{C}$ is called a **modular form** of weight k if

1) f is holomorphic on \mathcal{H}

2) $\lim_{\text{Im}(z) \to \infty} f(z)$ exists

3) f is "weakly modular of weight $k"

Weakly modular of weight k means that

$$f(\gamma(z)) = (cz + d)^k f(z)$$

for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$.
We define the **slash operator of weight** \(k \) to be

\[
 f \bigg|_{\gamma} = (cz + d)^{-k} f(\gamma(z))
\]

for \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).
We define the **slash operator of weight** k to be

$$f\big|_{\gamma} = (cz + d)^{-k}f(\gamma(z))$$

for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$f : \mathcal{H} \to \mathbb{C}$ is a modular form of weight k with respect to $\Gamma_0(N)$ if we replace our last two conditions with:

2) f is weakly modular of weight k with respect to $\Gamma_0(N)$

3) $f\big|_{\gamma}$ is holomorphic at ∞ for each $\gamma \in \text{SL}_2(\mathbb{Z})$.
We define the **slash operator of weight** k to be

$$f \bigg|_{\gamma} = (cz + d)^{-k} f(\gamma(z))$$

for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$f : \mathcal{H} \to \mathbb{C}$ is a modular form of weight k with respect to $\Gamma_0(N)$ if we replace our last two conditions with:

2) f is weakly modular of weight k with respect to $\Gamma_0(N)$

3) $f \bigg|_{\gamma}$ is holomorphic at ∞ for each $\gamma \in \text{SL}_2(\mathbb{Z})$.

The space of these modular forms is denoted $\mathcal{M}_k(\Gamma_0(N))$.
An Example

The classical **Eisenstein series** is given as

\[E_k = \frac{1}{2} \sum_{\gcd(c,d)=1} \frac{1}{(cz + d)^k} \]

and is a modular form of weight \(k \) on \(\text{SL}_2(\mathbb{Z}) \).
The classical **Eisenstein series** is given as

\[E_k = \frac{1}{2} \sum_{\gcd(c,d) = 1} \frac{1}{(cz + d)^k} \]

and is a modular form of weight \(k \) on \(\text{SL}_2(\mathbb{Z}) \).

These were studied by Rankin, Swinnerton-Dyer, and were shown to have zeros exactly on the boundary of the fundamental domain.
The classical **Eisenstein series** is given as

\[E_k = \frac{1}{2} \sum_{\gcd(c,d)=1} \frac{1}{(cz + d)^k} \]

and is a modular form of weight \(k\) on \(SL_2(\mathbb{Z})\).

These were studied by Rankin, Swinnerton-Dyer, and were shown to have zeros exactly on the boundary of the fundamental domain.

Our Problem (Part 1)

Where do Eisenstein series on \(\Gamma_0(N)\) vanish?
A modular form has a Fourier expansion given as

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q := e^{2\pi i z}, \quad z \in \mathcal{H}.$$
A modular form has a Fourier expansion given as

\[f(z) = \sum_{n=0}^{\infty} a_n q^n, \quad q := e^{2\pi iz}, \quad z \in \mathcal{H}. \]

A modular form is called a **cusp form** if \(a_0 = 0 \)
A modular form has a Fourier expansion given as

\[f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q := e^{2\pi i z}, \quad z \in \mathcal{H}. \]

A modular form is called a **cusp form** if \(a_0 = 0 \)

The zeros of Hecke cusp forms of weight \(k \) were shown to **equidistribute** in \(\mathcal{F} \)
A modular form has a Fourier expansion given as

\[f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q := e^{2\pi iz}, \quad z \in \mathcal{H}. \]

A modular form is called a **cusp form** if \(a_0 = 0 \)

The zeros of Hecke cusp forms of weight \(k \) were shown to **equidistribute** in \(\mathcal{F} \)

Equidistribution means a sort of "formal randomness," and has close ties with Quantum Unique Ergodicity.
Cusp Forms and Equidistribution

A modular form has a Fourier expansion given as

\[f(z) = \sum_{n=0}^{\infty} a_n q^n \quad q := e^{2\pi iz}, \quad z \in \mathcal{H}. \]

A modular form is called a **cusp form** if \(a_0 = 0 \)

The zeros of Hecke cusp forms of weight \(k \) were shown to **equidistribute** in \(\mathcal{F} \)

Equidistribution means a sort of "formal randomness," and has close ties with Quantum Unique Ergodicity.

Our Problem (Part 2)

What structure do our zeros display?
Recall From Last Time...

A **Dirichlet character** modulo n is a map $\chi : \mathbb{Z} \to \mathbb{C}$ which is

- totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers m, n
- periodic modulo n
- identically zero for all integers not coprime to n.

We say that χ is a **primitive character** modulo n if it is not induced by a character of smaller modulus k.

Given a primitive Dirichlet character χ_1 modulo q_1, and a primitive Dirichlet character χ_2 modulo q_2, we have the associated Eisenstein series of weight k:

$$E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d) = 1} \chi_1(c)\chi_2(d)\left(cq_2z + d\right)^{-k} \in \mathcal{M}_k(\Gamma_0(q_1q_2))$$
Recall From Last Time...

A Dirichlet character modulo n is a map $\chi : \mathbb{Z} \rightarrow \mathbb{C}$ which is
- totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers m, n
- periodic modulo n
- identically zero for all integers not coprime to n.

We say that χ is a primitive character modulo n if it is not induced by a character of smaller modulus k.
Recall From Last Time...

A **Dirichlet character** modulo n is a map $\chi : \mathbb{Z} \rightarrow \mathbb{C}$ which is

- totally multiplicative, that is, $\chi(1) = 1$ and $\chi(mn) = \chi(m)\chi(n)$ for all integers m, n
- periodic modulo n
- identically zero for all integers not coprime to n.

We say that χ is a **primitive character** modulo n if it is not induced by a character of smaller modulus k.

Given a primitive Dirichlet character χ_1 modulo q_1, and a primitive Dirichlet character χ_2 modulo q_2, we have the associated Eisenstein series of weight k:

$$E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z + d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2))$$
Finding Zeros

\[E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z + d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2)) \]

Where is this thing zero?
The \(cz + d \) expansion is "good" for \(\text{Im}(z) \ll \sqrt{k} \) and the Fourier expansion is "good" for \(\text{Im}(z) \gg \sqrt{k} \).

Within a certain horizontal strip, \(E_{\chi_1, \chi_2, k}(z) \) is dominated by just a few terms.
Finding Zeros

\[E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d)=1} \frac{\chi_1(c)\chi_2(d)}{(cq_2z + d)^k} \in M_k(\Gamma_0(q_1q_2)) \]

Where is this thing zero?
Finding Zeros

\[E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d)=1}^{\infty} \frac{\chi_1(c)\chi_2(d)}{(cq_2z + d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2)) \]

Where is this thing zero?

The \(cz + d \) expansion is "good" for \(\text{Im}(z) \ll \sqrt{k} \) and the Fourier expansion is "good" for \(\text{Im}(z) \gg \sqrt{k} \).
Finding Zeros

\[E_{\chi_1, \chi_2, k}(z) = \sum_{(c,d)=1}^{\infty} \frac{\chi_1(c)\chi_2(d)}{(cq_2z + d)^k} \in \mathcal{M}_k(\Gamma_0(q_1q_2)) \]

Where is this thing zero?

The cz + d expansion is "good" for \(\text{Im}(z) \ll \sqrt{k} \) and the Fourier expansion is "good" for \(\text{Im}(z) \gg \sqrt{k} \).

Within a certain horizontal strip, \(E_{\chi_1, \chi_2, k}(z) \) is dominated by just a few terms.
We assume q_2 is prime, and let a be an integer such that a and $a + 1$ are coprime to q_2.
We assume q_2 is prime, and let a be an integer such that a and $a + 1$ are coprime to q_2.

Figure: For $k = 10$, $q_1 = 3$, $q_2 = 5$
Letting θ denote the angle of z from the point $a^{q_2^2}$, we have proved that the zeros become distributed evenly with respect to θ as $k \to \infty$.

\[y = \frac{1+\eta}{2\sqrt{3q_2}} \]
Letting θ denote the angle of z from the point $\frac{a}{q_2}$, we have proved that the zeros become distributed evenly with respect to θ as $k \to \infty$.
Let $z = x + iy$, so in a small strip around
\[\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2 k} \leq x \leq \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2 k}, \]
we have that the main terms are
\[
g_a(z) := \frac{\chi(-a)}{(q_2 z - a)^k} + \frac{\chi(-a - 1)}{(q_2 z - a - 1)^k}.
\]
Let $z = x + iy$, so in a small strip around
\[
\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2 k} \leq x \leq \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2 k},
\]
we have that the main terms are
\[
g_a(z) := \frac{\chi(-a)}{(q_2 z - a)^k} + \frac{\chi(-a-1)}{(q_2 z - a - 1)^k}.
\]
This must happen when $x = \frac{a+1/2}{q_2}$.

Thomas Brazelton |
Distribution With Respect to θ

Let $z = x + iy$, so in a small strip around \(\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2 k} \leq x \leq \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2 k} \), we have that the main terms are

\[
g_a(z) := \frac{\chi(-a)}{(q_2 z - a)^k} + \frac{\chi(-a-1)}{(q_2 z - a-1)^k}.
\]

This must happen when $x = \frac{a+1/2}{q_2}$.

In this strip, we have that $g_a(z) = 0$ exactly when $z = \frac{a}{q_2} + Re^{i\theta}$ satisfies

\[
e^{2i\theta k} + (-1)^k \chi_2(a)\chi_2(a+1) = 0.
\]
Let $z = x + iy$, so in a small strip around
\[
\frac{a+1/2}{q_2} - \frac{\epsilon}{q_2 k} \leq x \leq \frac{a+1/2}{q_2} + \frac{\epsilon}{q_2 k},
\]
we have that the main terms are
\[
g_a(z) := \frac{\chi(-a)}{(q_2 z - a)^k} + \frac{\chi(-a - 1)}{(q_2 z - a - 1)^k}.
\]

This must happen when $x = \frac{a+1/2}{q_2}$.

In this strip, we have that $g_a(z) = 0$ exactly when $z = \frac{a}{q_2} + \text{Re}^i\theta$ satisfies
\[
e^{2i\theta k} + (-1)^k \chi_2(a)\overline{\chi_2(a + 1)} = 0.
\]

If θ satisfies the above equation, so does $\theta + \frac{n\pi}{k}$ for any $n \in \mathbb{N}$.
The W_n's

We look in small regions around each zero of $g(a)(z)$.
We look in small regions W_n around each zero of $g_a(z)$.
It suffices to show that \(E_{\chi_1, \chi_2, k}(z) \) also has one zero in \(\mathcal{W}_n \).
It suffices to show that $E_{\chi_1, \chi_2, k}(z)$ also has one zero in W_n.

Lemma

The error term $|E_{\chi_1, \chi_2, k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.
Leading Up to a Theorem...

It suffices to show that $E_{\chi_1, \chi_2, k}(z)$ also has one zero in W_n.

Lemma

The error term $|E_{\chi_1, \chi_2, k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.

Lemma

In each W_n where $1 \leq n \leq m - 1$, both $g_a(z)$ and $E_{\chi_1, \chi_2, k}(z)$ have one zero when k is sufficiently large.
It suffices to show that $E_{\chi_1, \chi_2, k}(z)$ also has one zero in W_n.

Lemma

The error term $|E_{\chi_1, \chi_2, k}(z) - g_a(z)|$ vanishes quickly as $k \to \infty$.

Lemma

In each W_n where $1 \leq n \leq m - 1$, both $g_a(z)$ and $E_{\chi_1, \chi_2, k}(z)$ have one zero when k is sufficiently large.

Proposition

When $q_1 > 3$, all these zeros are $\Gamma_0(q_1 q_2)$-inequivalent. That is, there does not exist a $\gamma \in \Gamma_0(q_1 q_2)$ that maps one zero to another.
Theorem

For \(k \) sufficiently large, \(E_{\chi_1, \chi_2, k}(z) \) has \(m = \frac{k}{3} + O\left(\sqrt{k \log^2(k)}\right) \) zeros tending to the vertical line \(\Re(z) = \frac{a + 1/2}{q_2} \) which are \(\Gamma_0(q_1 q_2) \)-inequivalent and become distributed with respect to their angle from the point \(\frac{a}{q_2} \).
The Structure of Zeros

The zeros we have found vary by height on the order of $O\left(\frac{1}{k}\right)$, and there are $\varphi(q_2)$ lines of them in $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

Conjecture

As q_2 tends to infinity, and k tends to infinity much slower, the zeros of $E^{\chi_1,\chi_2,k}(z)$ equidistribute when they are mapped back to the fundamental domain F.

Thomas Brazelton |
The Structure of Zeros

The zeros we have found vary by height on the order of $O\left(\frac{1}{k}\right)$, and there are $\varphi(q_2)$ lines of them in $\left(-\frac{1}{2}, \frac{1}{2}\right]$.

This means we can try to see them on horocycles, which are horizontal unit length segments in hyperbolic space. We know that horocycles equidistribute.
The Structure of Zeros

The zeros we have found vary by height on the order of $O\left(\frac{1}{k}\right)$, and there are $\varphi(q_2)$ lines of them in $\left(-\frac{1}{2},\frac{1}{2}\right]$.

This means we can try to see them on horocycles, which are horizontal unit length segments in hyperbolic space. We know that horocycles equidistribute.

Conjecture

As q_2 tends to infinity, and k tends to infinity much slower, the zeros of $E_{\chi_1,\chi_2,k}(z)$ equidistribute when they are mapped back to the fundamental domain \mathcal{F}.
Thank you!