On Classification of the Unitarizability of Irreducible Representations of B_5

Étude Aro O’Neel-Judy

Northern Arizona University

July 17, 2017
I got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_n.
I got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_n.

The Problem
I wanted to classify representations of B_5 with dimension greater than 5. This means being able to write down the form of the matrices for this representation.
I got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_n.

The Problem
I wanted to classify representations of B_5 with dimension greater than 5. This means being able to write down the form of the matrices for this representation.

The Strategy
I needed to find a special basis in which all the matrices of this representation acquire a predetermined form.
PLOT TWIST!

All of my approaches to the problem from the previous slide failed!
PLOT TWIST!

All of my approaches to the problem from the previous slide failed!

1. With two weeks left, Small Paul and I joined forces!
PLOT TWIST!

All of my approaches to the problem from the previous slide failed!

1. With two weeks left, Small Paul and I joined forces!
2. We successfully classified which representations of B_5 of dimension $d \leq 5$ are unitarizable!
Unitarizability

1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.
2. A qubit may be represented as a vector in a complex Hilbert space.
3. We can manipulate this quantum information by applying a unitary transformation (matrix).

Why do we care?
1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.
1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.

2. A qubit may be represented as a vector in a complex Hilbert space.
Unitarizability

1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.
2. A qubit may be represented as a vector in a complex Hilbert space.
3. We can manipulate this quantum information by applying a unitary transformation (matrix).
What Words Mean

Definition (Braid Group)

The **braid group on** n-*strands* is given by

$$B_n = \langle \sigma_1, \sigma_2, \ldots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \forall \ i \in \{1, \ldots n - 1\} \rangle$$

$$\sigma_i \sigma_j = \sigma_i \sigma_{j} \quad \forall \ |i - j| \neq 1$$
What Words Mean

Definition (Braid Group)

The **braid group on** \(n \)-**strands** is given by

\[
B_n = \langle \sigma_1, \sigma_2, \ldots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \forall \ i \in \{1, \ldots n - 1\} \\
\sigma_i \sigma_j = \sigma_j \sigma_i \quad \forall \ |i - j| \neq 1 \rangle
\]

Definition (Representation)

A **representation** of a group \(G \) is a pair \((\rho, V)\), where \(V \) is a \(d \) dimensional vector space over \(\mathbb{C} \) and \(\rho \) is a group homomorphism from \(G \) to the collection of \(d \times d \) invertible matrices over \(\mathbb{C} \).
Definition (Irreducible)

A representation is irreducible if \(V \) contains no proper, non-trivial subspaces \(W \) such that \(\rho(g)w \in W \) for all \(g \in G, w \in W \).
What Even More Words Mean

Definition (Irreducible)
A representation is **irreducible** if V contains no proper, non-trivial subspaces W such that $\rho(g)w \in W$ for all $g \in G$, $w \in W$.

Definition (Unitarizable)
A representation ρ is **unitarizable** provided there exists a Hermitian inner product $\langle \cdot | \cdot \rangle_A$ such that $\langle \rho(g)v | \rho(g)w \rangle_A = \langle v | w \rangle_A$ for all $g \in G$ and for all $v, w \in V$.

Note: The arbitrary inner product $\langle \cdot | \cdot \rangle_A$ may be related to the standard inner product via $\langle v | w \rangle_A = \langle Av | w \rangle_A$ for some matrix A.
What Even More Words Mean

Definition (Irreducible)

A representation is **irreducible** if V contains no proper, non-trivial subspaces W such that $\rho(g)w \in W$ for all $g \in G, w \in W$.

Definition (Unitarizable)

A representation ρ is **unitarizable** provided there exists a Hermitian inner product $\langle \cdot | \cdot \rangle_A$ such that

$$\langle \rho(g)v | \rho(g)w \rangle_A = \langle v | w \rangle_A$$

for all $g \in G$ and for all $v, w \in V$.

Note:
Definition (Irreducible)
A representation is **irreducible** if V contains no proper, non-trivial subspaces W such that $\rho(g)w \in W$ for all $g \in G$, $w \in W$.

Definition (Unitarizable)
A representation ρ is **unitarizable** provided there exists a Hermitian inner product $\langle \cdot | \cdot \rangle_A$ such that $\langle \rho(g)v | \rho(g)w \rangle_A = \langle v | w \rangle_A$ for all $g \in G$ and for all $v, w \in V$.

Note: The arbitrary inner product $\langle \cdot | \cdot \rangle_A$ may be related to the standard inner product via $\langle v | w \rangle_A = \langle A v | w \rangle$ for some matrix A.
Quick Example

What does it mean for a matrix to be unitary?
Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A = I$, then we may recover the usual notion of the length of a vector v from the standard inner product

$$\langle v|v\rangle_{A} = \langle Av|v\rangle = \langle Iv|v\rangle = \langle v|v\rangle.$$
Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A = I$, then we may recover the usual notion of the length of a vector v from the standard inner product $\langle v|v \rangle_A = \langle Av|v \rangle = \langle Iv|v \rangle = \langle v|v \rangle$.

Under the standard inner product, a unitary matrix $\rho(g)$ has the property that $\langle \rho(g)v|\rho(g)v \rangle = \langle v|v \rangle$.
Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A = I$, then we may recover the usual notion of the length of a vector v from the standard inner product $\langle v | v \rangle_A = \langle Av | v \rangle = \langle Iv | v \rangle = \langle v | v \rangle$.

Under the standard inner product, a unitary matrix $\rho(g)$ has the property that $\langle \rho(g) v | \rho(g) v \rangle = \langle v | v \rangle$.

In other words, applying a unitary matrix to a vector does not change the vector’s length!
Definition (Adjoint)

Let A be a matrix, then we define the adjoint of $\rho(g)$ with respect to A via $\rho(g)^* = A^{-1} \rho(g)^\dagger A$, where † denotes complex conjugate transpose.

Useful Tools

Definition (Adjoint)

Let A be a matrix, then we define the adjoint of $\rho(g)$ with respect to A via $\rho(g)^* = A^{-1} \rho(g)^\dagger A$, where † denotes complex conjugate transpose.

Definition (Unitarizable Matrix)

A matrix $\rho(g)$ is unitarizable provided there exists a matrix A such that $\rho(g)\rho(g)^* = \rho(g)A^{-1}\rho(g)^\dagger A = I$.
The Classification Problem

Formanek et al. showed that all irreducible representations of B_5 of dimension $d \leq 5$ take the following form:
The Classification Problem

Formanek et al. showed that all irreducible representations of B_5 of dimension $d \leq 5$ take the following form:

$$\chi(c) \otimes \rho(t)$$

Where $\chi(c)$ is a one-dimensional representation defined by $\chi(c)(\sigma_i) = c$, $\rho(t)$ is one of four main representation types, and t and c are parameters.
The Classification Problem

Formanek et al. showed that all irreducible representations of B_5 of dimension $d \leq 5$ take the following form:

$$\chi(c) \otimes \rho(t)$$

Where $\chi(c)$ is a one-dimensional representation defined by $\chi(c)(\sigma_i) = c$, $\rho(t)$ is one of four main representation types, and t and c are parameters.

Classification

To classify the unitarizability of the representations of B_5, we need to check the unitarizability of $\tilde{\rho} = \chi(c) \otimes \rho(t)$ given $\rho(t)$.
The Process

Consider the representation \(\tilde{\rho} = \chi(c) \otimes \rho(t) \) of \(B_5 \). It follows from the definition that \(\tilde{\rho} \) is unitarizable if and only if there exists an \(A \) such that,
The Process

Consider the representation $\tilde{\rho} = \chi(c) \otimes \rho(t)$ of B_5. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$l = \tilde{\rho}(\sigma_i)(\tilde{\rho}(\sigma_i))^*$$

$$= \tilde{\rho}(\sigma_i)A^{-1}(\tilde{\rho}(\sigma_i))^\dagger A$$
Consider the representation $\tilde{\rho} = \chi(c) \otimes \rho(t)$ of B_5. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$I = \tilde{\rho}(\sigma_i)(\tilde{\rho}(\sigma_i))^*$$
$$= \tilde{\rho}(\sigma_i)A^{-1}(\tilde{\rho}(\sigma_i))^\dagger A$$

After further manipulation, we see that the above is equivalent to
The Process

Consider the representation $\tilde{\rho} = \chi(c) \otimes \rho(t)$ of B_5. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$I = \tilde{\rho}(\sigma_i)(\tilde{\rho}(\sigma_i))^*$$

$$= \tilde{\rho}(\sigma_i)A^{-1}(\tilde{\rho}(\sigma_i))^\dagger A$$

After further manipulation, we see that the above is equivalent to

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$

(1)
We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields
More About Process

We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$
We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$

$$= A(\chi(c) \otimes \rho(t))(\sigma_i) - ((\chi(c) \otimes \rho(t))(\sigma_i)^\dagger)^{-1}A$$
We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$

$$= A(\chi(c) \otimes \rho(t))(\sigma_i) - ((\chi(c) \otimes \rho(t))(\sigma_i)^\dagger)^{-1}A$$

$$= A(c\rho(t)(\sigma_i)) - ((c\rho(t)(\sigma_i))^\dagger)^{-1}A$$
We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$

$$= A(\chi(c) \otimes \rho(t))(\sigma_i) - ((\chi(c) \otimes \rho(t))(\sigma_i)^\dagger)^{-1}A$$

$$= A(c\rho(t)(\sigma_i)) - ((c\rho(t)(\sigma_i))^\dagger)^{-1}A$$

$$= c(A\rho(t)(\sigma_i)) - \frac{1}{c}((\rho(t)(\sigma_i))^\dagger)^{-1}A$$
We may now expand using \(\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i) \), which yields

\[
0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^{\dagger})^{-1} A \\
= A(\chi(c) \otimes \rho(t))(\sigma_i) - ((\chi(c) \otimes \rho(t))(\sigma_i)^{\dagger})^{-1} A \\
= A(c\rho(t)(\sigma_i)) - ((c\rho(t)(\sigma_i))^{\dagger})^{-1} A \\
= c(A\rho(t)(\sigma_i)) - \frac{1}{\bar{c}}((\rho(t)(\sigma_i))^{\dagger})^{-1} A \\
= c\bar{c}(A\rho(t)(\sigma_i)) - ((\rho(t)(\sigma_i))^{\dagger})^{-1} A
\]

We see then that if \(c\bar{c} = 1 \), i.e. if \(c \) is on the unit circle, then \(\dot{\rho} \) is unitarizable exactly when \(\rho(t) \) is.
More About Process

We may now expand using $\tilde{\rho}(\sigma_i) = (\chi(c) \otimes \rho(t))(\sigma_i)$, which yields

$$0 = A\tilde{\rho}(\sigma_i) - ((\tilde{\rho}(\sigma_i))^\dagger)^{-1}A$$
$$= A(\chi(c) \otimes \rho(t))(\sigma_i) - ((\chi(c) \otimes \rho(t))(\sigma_i)^\dagger)^{-1}A$$
$$= A(c\rho(t)(\sigma_i)) - ((c\rho(t)(\sigma_i))^\dagger)^{-1}A$$
$$= c(A\rho(t)(\sigma_i)) - \frac{1}{\bar{c}}((\rho(t)(\sigma_i))^\dagger)^{-1}A$$
$$= c\bar{c}(A\rho(t)(\sigma_i)) - ((\rho(t)(\sigma_i))^\dagger)^{-1}A$$

We see then that if $c\bar{c} = 1$, i.e. if c is on the unit circle, then $\dot{\rho}$ is unitarizable exactly when $\rho(t)$ is.

An interesting question is whether there exists some c and some non-unitarizable representation $\rho(t)$ such that $\tilde{\rho}$ is unitarizable.
Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$0 = c\bar{c}(A\rho(t)(\sigma_i)) - ((\rho(t)(\sigma_i))^\dagger)^{-1}A$$

into a master coefficient matrix composed of the coefficient matrices for each σ_i.

Étude Aro O’Neel-Judy

Classification of Irreducible Representations of B_5
Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$
0 = c\bar{c}(A\rho(t)(\sigma_i)) - ((\rho(t)(\sigma_i))\dag)^{-1}A
$$

into a master coefficient matrix composed of the coefficient matrices for each σ_i.

2. I then solved the coefficient matrices for the Hecke $\rho(t) = H(t)$, and reduced-extended Burau $\rho(t) = \hat{\beta}(t)$ representations.
Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$0 = c\bar{c}(A\rho(t)(\sigma_i)) - ((\rho(t)(\sigma_i))^\dagger)^{-1}A$$

into a master coefficient matrix composed of the coefficient matrices for each σ_i.

2. I then solved the coefficient matrices for the Hecke $\rho(t) = H(t)$, and reduced-extended Burau $\rho(t) = \hat{\beta}(t)$ representations.

3. I found that for both H and $\hat{\beta}$ there was no c that satisfied the above equation for all σ_i.

4. Collectively, Small Paul and I have fully classified which representations of B_5 of dimension $d \leq 5$ are unitarizable!
Next Steps

1. Now that we are done with the representations of B_5, Paul and I have ambitions to classify representations of B_n for $n \neq 5$.

Next Steps

1. Now that we are done with the representations of B_5, Paul and I have ambitions to classify representations of B_n for $n \neq 5$.

2. In this process, if we do not find any non-unitarizable representations $\rho(t)$ that can be unitarized with the right $\chi(c)$ then we will have shown by exhaustion that $\tilde{\rho}$ is unitarizable if and only if c is on the unit circle and $\rho(t)$ is unitarizable.
Thanks for listening!

Special thanks to:
NSF - Funding
Texas A&M Mathematics Dept. REU Program - Gracious Host
Dr. Julia Plavnik - Research Mentor
Paul Gustafson & Ola Sobieska - Graduate Assistants
Paul Vienhage - Group Partner