Neural Bonanza III

The Final Bonanza, Pt. II

Brianna Gambacini, University of Connecticut

Sam Macdonald, Willamette University
Definition
A code C is **max-intersection complete** if all the intersections of its facets are in C. If a code does not contain all of its facets’ intersections then it is **max-intersection incomplete**.

Definition
For a neural code C on n vertices, the **simplicial complex** $\Delta(C)$ is a subset of $2^[[n]]$ that is closed under taking subsets, where $[n] := \{1, 2, \ldots, n\}$ is the population of neurons. More specifically:

$$\Delta(C) := \{\sigma \subseteq [n] : \sigma \subseteq \alpha \text{ for some } \alpha \in C\}.$$

Definition
Let Δ be a simplicial complex on n vertices and $\sigma \in \Delta$. Then the **link** of σ in Δ is:

$$\text{Lk}_\sigma(\Delta) := \{\tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta\}.$$
Theorem

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.
Theorem

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.
Complete to the Max

Theorem

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.
Theorem

Let C be a locally good neural code on n neurons. If no intersection of facets contains more than one neuron, then C is max-intersection complete.

Proof.

Let C be a locally good neural code on n neurons with distinct facets M_1, M_2, \ldots, M_n such that no intersection of facets contains more than one neuron.

Suppose by way of contradiction that C is max intersection incomplete. Thus there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

As M_i and M_j are distinct, there must exist α, β such that $M_i = \sigma \alpha$ and $M_j = \sigma \beta$.
Proof.

Consider $\text{Lk}_\sigma(\Delta)$. Recall that $\text{Lk}_\sigma(\Delta) := \{\tau \subseteq [n] \backslash \sigma : \sigma \cup \tau \in \Delta\}$.
Consider $Lk_\sigma(\Delta)$. Recall that $Lk_\sigma(\Delta) := \{\tau \subseteq [n]\\setminus \sigma : \sigma \cup \tau \in \Delta\}$.

As $\sigma \cup \alpha$ and $\sigma \cup \beta \in \Delta(C)$, it must be the case that $\alpha, \beta \in Lk_\sigma(\Delta)$.
Proof.

Consider $\text{Lk}_\sigma(\Delta)$. Recall that $\text{Lk}_\sigma(\Delta) := \{\tau \subseteq [n] \setminus \sigma : \sigma \cup \tau \in \Delta\}$.

As $\sigma \cup \alpha$ and $\sigma \cup \beta \in \Delta(\mathcal{C})$, it must be the case that $\alpha, \beta \in \text{Lk}_\sigma(\Delta)$.

Thus, as it stands, $\text{Lk}_\sigma(\Delta)$ is the following:

\[
\begin{array}{c c}
\alpha & \beta \\
\bullet & \bullet
\end{array}
\]

which is not contractible. There are three ways to make this link contactable, and we will show how each leads to a contradiction.
Proof.

This would introduce $\sigma \alpha \beta$ to the code. This is either a facet of C or a subset of some facet in C. Either way, the intersection of this facet with M_i is $\sigma \alpha$, a contradiction.
Case II: There Exists Exactly One λ

Proof.

This would introduce $\sigma\alpha\lambda$ and $\sigma\beta\lambda$ to the code. These codewords are either facets of C or subsets of other facets in C. Either way, the intersection of these facets is $\sigma\lambda$, a contradiction.
Case III: There Exists a Finite Number of λs

Proof.

This would introduce quite a few things to the code. However, just focusing on $\alpha, \lambda_1, \lambda_2$, we see that both $\sigma \alpha \lambda_1$ and $\sigma \lambda_1 \lambda_2$ are in the code, meaning this case also results in contradiction. Thus, C must be max intersection complete. \square
Theorem

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.
Three for the Price of Three!

Theorem

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n.
Theorem

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n.

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.
Three for the Price of Three!

Theorem

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n.

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

The facets M_i and M_j must be of at least length two to remain distinct, given their shared σ.
Theorem

Let C be a 3-sparse locally good max intersection incomplete code. Then there must be at least three codewords of length three.

Proof.

Let C be a 3-sparse locally good max intersection incomplete code with distinct facets M_1, M_2, \ldots, M_n.

Then there must exist some neuron $\sigma \notin C$ and $M_i, M_j \in C$ such that $M_i \cap M_j = \sigma$.

The facets M_i and M_j must be of at least length two to remain distinct, given their shared σ.

However, if M_i and M_j were of length two, then σ would be a mandatory codeword.
Proof.

So M_i and M_j must be of length three.
Proof.

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As C is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.
Proof.

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As C is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.

To remain distinct from M_i and M_j, M_k must contain some neuron $\tau \notin M_i, M_j$. However, if both $M_i \cap M_k = \sigma$ and $M_j \cap M_k = \sigma$, then there would exist a local obstruction at σ.

Thus, without loss of generality, there must exist some α such that $M_i \cap M_k = \sigma^\alpha$. Therefore, as C is 3-sparse we know that $M_k = \sigma^\alpha$, completing the proof. □
Proof.

So M_i and M_j must be of length three.

However, this could not be the entire code, as this would make σ a mandatory codeword. As C is 3-sparse, there must exist some other facet $M_k \in C$ such that $M_i \cap M_j \cap M_k = \sigma$.

To remain distinct from M_i and M_j, M_k must contain some neuron $\tau \notin M_i, M_j$. However, if both $M_i \cap M_k = \sigma$ and $M_j \cap M_k = \sigma$, then there would exist a local obstruction at σ.

Thus, without loss of generality, there must exist some α such that $M_i \cap M_k = \sigma \alpha$. Therefore, as C is 3-sparse we know that $M_k = \sigma \alpha \tau$, completing the proof. □
Definition

For a 3-sparse neural code, the **reduced** code of C, denoted C_{red}, is the code containing all length three codewords of C and their subsets that are also in C.

Example

Consider the following neural code:

\[C = \{ \text{one.osf/two.osf/three.osf}, \text{one.osf/three.osf/four.osf}, \text{one.osf/four.osf/five.osf}, \text{one.osf/three.osf}, \text{one.osf/four.osf}, \text{two.osf/six.osf}, \text{two.osf/seven.osf}, \text{two.osf/nine.osf}, \text{three.osf/five.osf}, \text{three.osf/seven.osf}, \text{three.osf/eight.osf}, \text{four.osf/six.osf}, \text{four.osf/eight.osf}, \text{four.osf/nine.osf}, \text{five.osf/eight.osf}, \text{six.osf/seven.osf}, \text{seven.osf/nine.osf}, \text{eight.osf/nine.osf}, \text{two.osf}, \text{three.osf}, \text{four.osf}, \text{five.osf}, \text{six.osf}, \text{seven.osf}, \text{eight.osf}, \text{nine.osf}, \emptyset \} \]

$C_{\text{red}} = \{ \text{one.osf/two.osf/three.osf}, \text{one.osf/three.osf/four.osf}, \text{one.osf/four.osf/five.osf}, \text{one.osf/three.osf}, \text{one.osf/four.osf}, \emptyset \}$
Definition

For a 3-sparse neural code, the **reduced** code of C, denoted C_{red}, is the code containing all length three codewords of C and their subsets that are also in C.

Example

Consider the following neural code:

$$C = \{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.$$
Definition

For a 3-sparse neural code, the **reduced** code of C, denoted C_{red}, is the code containing all length three codewords of C and their subsets that are also in C.

Example

Consider the following neural code:

$$C = \{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset \}.$$

$$C_{\text{red}} = \{123, 134, 145, 13, 14, \emptyset \}$$
Theorem

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex cover $U = \{U_i\}_{i=1}^{n}$ in \mathbb{R}^d of C_{red} such that every set in U can be realized as fully \mathbb{R}^{d-1} or higher, then C is open convex.
Theorem

Let C be a 3-sparse neural code on n neurons. If there exists a closed convex cover $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d of C_{red} such that every set in U can be realized as fully \mathbb{R}^{d-1} or higher, then C is open convex.

Proof.
Let C be a 3-sparse locally good neural code on n neurons. Suppose that there exists some fully dimensional closed cover of C_{red}, denoted $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d. We will construct an open cover of C using U.
Proof.

\[C = \{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\} \]
Step One: Intersections of Neurons in \(C_{\text{red}} \)

Proof.

\[
C = \{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset \}.
\]
Step One: Intersections of Neurons in C_{red}

Proof.

$C =$

\{123, 134, 145, 13, 14, 26, 27, 29, \textbf{35}, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\}.
Step One: Intersections of Neurons in C_{red}

Proof.
Proof.

Using the same epsilonic procedure as was used in Theorem 4.3, we can make this new realization fully dimensional.
Proof.

The only neurons missing from U are the ones not involved in any triple-wise intersection. Let $A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset C$ denote the set of these neurons.
Proof.

The only neurons missing from U are the ones not involved in any triple-wise intersection. Let $A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset C$ denote the set of these neurons.

Begin with some α_i such that α_i fires with some neuron $\beta_1 \in C_{red}$.
Step Two: Neurons in C but not \(C_{\text{red}}\)

Proof.

The only neurons missing from \(U\) are the ones not involved in any triple-wise intersection. Let \(A = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subseteq C\) denote the set of these neurons.

Begin with some \(\alpha_i\) such that \(\alpha_i\) fires with some neuron \(\beta_1 \in C_{\text{red}}\).
Step Two: Neurons in \(C \) but not \(C_{red} \)

Proof.

\[
C = \\{ 123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset \}.
\]
Step Two: Neurons in C but not C_{red}

Proof.

\[C = \{123, 134, 145, 13, 14, 26, 27, 29, 35, 37, 38, 46, 48, 49, 58, 67, 79, 89, 2, 3, 4, 5, 6, 7, 8, 9, \emptyset\} . \]
In general, either $\alpha_i \in C$ or it isn’t. If not, draw it as a subset of β_1. If so, draw it so that it overlaps with β_1.

Proof.
Repeat this process for each $1 \leq i \leq n$, each time selecting a codeword that contains a neuron already existing in the realization. This provides us with a fully dimensional closed realization of C.

Proof.
Proof.

Repeat this process for each $1 \leq i \leq n$, each time selecting a codeword that contains a neuron already existing in the realization. This provides us with a fully dimensional closed realization of C.

Thus, by Theorem 4.3, C is convex. □
Conjecture

Let C be a closed convex neural code on n neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of C. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then C is not open convex.
Conjecture
Let C be a closed convex neural code on n neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of C. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then C is not open convex.

Conjecture
Let C be a locally good neural code on n neurons. If C is not open convex, then any convex realization of C in \mathbb{R}^d must contain a set that can only be realized in \mathbb{R}^{d-2} or below.
Conjecture

Let C be a closed convex neural code on n neurons. Let $U = \{U_i\}_{i=1}^n$ in \mathbb{R}^d be an arbitrary open convex cover of C. If filling in the boundary of each $U_i \in U$ will always create a set that can only be realized in \mathbb{R}^{d-2} or below, then C is not open convex.

Conjecture

Let C be a locally good neural code on n neurons. If C is not open convex, then any convex realization of C in \mathbb{R}^d must contain a set that can only be realized in \mathbb{R}^{d-2} or below.

Conjecture

Let C be a locally good neural code on n neurons. If $n \leq 7$, then C must be either open or closed convex.

• Sarah Ayman Goldrup and Kaitlyn Phillipson. Classification of open and closed convex codes on five neurons, 2014.