Probability of Easily Approximating Positive Reals
Roots of Trinomials

Laurel Newman

Harvey Mudd College

26 July 2019
Outline

1. Notation

2. Failure Probability vs. Exponent Ratio

3. Failure Probability vs. Variance Ratio

4. Upper Bounding Failure Probability vs. Variance Ratio
 - Small sigma: linear
 - Large sigma: x^{-k}
Univariate Trinomials

Let \(f(x) = c_1 x^{\alpha_0} + c_2 x^{\alpha_1} + c_3 x^{\alpha_2} \)

- \(\alpha_0 < \alpha_1 < \alpha_2 \)
- \(c_i \sim N(0, \sigma_i) \)
- generally, \(\alpha_0 = 0 \)
Spread

\[
\text{spread}(f) := \frac{\min(\alpha_1 - \alpha_0, \alpha_2 - \alpha_1)}{\alpha_2 - \alpha_0}
\]
Spread

\[\text{spread}(f) := \frac{\min(\alpha_1 - \alpha_0, \alpha_2 - \alpha_1)}{\alpha_2 - \alpha_0} \]

- \[\text{spread}(c_1 x^{\alpha_0} + c_2 x^{\frac{\alpha_0 + \alpha_2}{2}} + c_3 x^{\alpha_2}) = 0.5 \]
- As \(\alpha_1 \to \alpha_0 \) or \(\alpha_2 \), \(\text{spread}(f) \to 0 \)
Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?
Experimental Consideration

What is the relationship between the spread of a trinomial f and its failure probability?

Method:
- fix α_2
- iterate α_1 from $[1, \alpha_2 - 1]$
- 1,000,000 trials per ratio
- generate new random standard Gaussian coefficients each trial
Trinomial Exponent Ratio: Results I

\[f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100} \]

- 99 exponent ratios
- scipy's \texttt{curve_fit} function
Trinomial Exponent Ratio: Results I

\[f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100} \]

- 99 exponent ratios
- \textit{scipy}'s \texttt{curve_fit} function

\[h(x) = 0.61353465 + 21.87751589x - 21.86653471x^2 \]
Trinomial Exponent Ratio: Results II

\[f = c_1 + c_2 x^{\alpha_1} + c_3 x^{100} \]
- 99 exponent ratios
- \(h(x) = 0.61353465 + 21.87751589x - 21.86653471x^2 \)

\[f = c_1 + c_2 x^{\alpha_1} + c_3 x^{25} \]
- 24 exponent ratios
- \(h(x) = 0.70218905 + 21.39398914x - 21.38648046x^2 \)

\[f = c_1 + c_2 x^{\alpha_1} + c_3 x^{1987} \]
- \(\alpha_1 \in [19, 1900] \)
- \(h(x) = 0.65875168 + 21.56950267x - 21.5027753x^2 \)
Trinomial Exponent Ratio: Results III

\[f = c_1 x^{24} + c_2 x^{a_1} + c_3 x^{626} \]

- 100 exponent ratios
- x-axis \(\frac{24}{a_1} \)

\[
\begin{align*}
 h(x) &= -0.27225719 + 23.51542209x - 21.77854389x^2
\end{align*}
\]
Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse.
Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse
- Failure probability appears to never exceed 6%
Experimental Hypotheses

- The graph of the failure probability as a function of trinomial spread is, roughly, a parabola or ellipse.
- Failure probability appears to never exceed 6%.
- Failure probability also depends on variance ratios.
Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma^2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?
Experimental Consideration

What is the relationship between the failure probability of f, a quadratic polynomial, and $\frac{\sigma_2}{\sigma_1}$, recalling that $c_i \sim N(0, \sigma_i)$?

Method:

- 100 values of σ_2 in [0.1, 10]
- 1,000,000 trials per ratio
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0, \sigma_2)$ each trial
Varying the standard deviation of c_2:

- $\sigma_2 \in [0.1, 10]$

Figure: Quadratic σ_2 vs. Failure Probability

$$h(x) = -1.03061413 + 15.572038x^{1.0356945}e^{-1.04617418x} + 1.76374323xe^{-0.20716401x}$$
Varying the standard deviation of c_3:

- $\sigma_3 \in [0.1, 100]$
Varying the standard deviation of c_3:

$\sigma_3 \in [0.1, 100]$

Figure: Quadratic σ_3 vs. Failure Probability

$$h(x) = 0.85961511 + 6.15174179x^{0.13562741} e^{-0.26987804x} + 0.35691471xe^{-0.10525011x}$$
What is the relationship between the failure probability of
\[f = c_1 + c_2 x^{99} + c_3 x^{100} \] and \[\frac{\sigma^2}{\sigma_1^2} \], recalling that \(c_i \sim N(0, \sigma_i) \)?
Experimental Consideration

What is the relationship between the failure probability of
\[f = c_1 + c_2 x^{99} + c_3 x^{100} \]
and \(\frac{\sigma_2}{\sigma_1} \), recalling that \(c_i \sim N(0, \sigma_i) \)?

Method:

- 100 values of \(\sigma_2 \) in \([0.1, 60]\)
- 1,000,000 trials per ratio
- generate \(c_1 \) and \(c_3 \) from standard Gaussian distributions, and \(c_2 \) from \(N(0, \sigma_2) \) each trial
Varying the standard deviation of c_2:

$$h(x) = -0.06450709 + 0.18826155x^{0.55247034}e^{-0.15034146x} - 1.03096168xe^{-1.09906311x}$$
Varying the standard deviation of c_1:

Figure: σ_1 vs. Failure Probability
New Experimental Questions

- Can we simplify the fit functions in some way?

Idea:
- Could using multiple simple piecewise functions approximate the failure probabilities?
- Can we extract meaning from the coefficients of the fit functions?
- Do the coefficients have a relationship to the exponent spread of the polynomial?
- Can we transform the fit functions into upper bounds?
- Can we find specific coefficients that upper bound the failure probabilities for all exponent spreads?
New Experimental Questions

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?
New Experimental Questions

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions?
Can we simplify the fit functions in some way?
Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

Can we extract meaning from the coefficients of the fit functions?
Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?
New Experimental Questions

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions?
 Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?

- Can we transform the fit functions into upper bounds?
New Experimental Questions

- Can we simplify the fit functions in some way?
 Idea: Could using multiple simple piecewise functions approximate the failure probabilities?

- Can we extract meaning from the coefficients of the fit functions?
 Idea: Do the coefficients have a relationship to the exponent spread of the polynomial?

- Can we transform the fit functions into upper bounds?
 Idea: Can we find specific coefficients that upper bound the failure probabilities for all exponent spreads?
Can we simplify the fit functions in some way?

Figure: Piecewise linear and x^{-k} fit functions for failure probability vs. σ
Experimental Consideration

What is the minimum slope that upper bounds the failure probability when \(\sigma_2 \leq 1 \)?

\[
f(x) = c_1 + c_2 x + c_3 x^2
\]

Figure: Linear upper bound and fit lines for failure probability vs. \(\sigma \leq 1 \)
Experimental Consideration

What is the minimum slope that upper bounds the failure probability when $\sigma_2 \leq 1$, and what is its relationship to the trinomial’s spread?
Experimental Consideration

What is the minimum slope that upper bounds the failure probability when \(\sigma_2 \leq 1 \), and what is its relationship to the trinomial’s spread?

Method:

- 10 exponent ratios in \([0.1, 1]\)
 - 10 values of \(\sigma_2 \) in \([0.1, 1]\)
 - 100,000 trials per \(\sigma_2 \)
- generate \(c_1 \) and \(c_3 \) from standard Gaussian distributions, and \(c_2 \) from \(N(0, \sigma_2) \) each trial
- find upper bound curve of form \(g(x) = ax \)
- per trinomial exponent ratio, average 10 values of \(a \)
Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio
Piecewise Variance Ratio: $\sigma_2 \leq 1$ Results

$$g(x) = a\sqrt{\max\left(\alpha_1, \alpha_2 - \alpha_1\right)}$$

Figure: Minimum slopes for upper bound line vs. trinomial exponent ratio
Experimental Consideration

Finding a function of the form \(g(x) = ax^{-k} \) which is an upper bound for failure probability when \(\sigma_2 \geq 1 \).
Piecewise Variance Ratio: $\sigma_2 \geq 1$

Experimental Consideration

Finding a function of the form $g(x) = ax^{-k}$ which is an upper bound for failure probability when $\sigma_2 \geq 1$.

Method:

- 10 exponent ratios in $[0.1, 1]$
 - 10 values of σ_2 in $[1, 20]$
 - 1,000,000 trials per σ_2
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0, \sigma_2)$ each trial
- fit data to $g(x) = ax^{-k}$ using scipy’s `curve_fit` function
- increment k until g is an upper bound curve
- per exponent ratio, average 10 values of k
Piecwise Variance Ratio: $\sigma_2 \geq 1$ Results I

Figure: Upper bound constants and exponents vs. trinomial exponent ratios
Experimental Consideration

What is the minimum upper bound curve of the form $g(x) = ax^{-0.9}$ for failure probability when $\sigma_2 \geq 1$.
Experimental Consideration

What is the minimum upper bound curve of the form $g(x) = ax^{-0.9}$ for failure probability when $\sigma_2 \geq 1$.

Method:

- 10 exponent ratios in $[0.1, 1]$
- 10 values of σ_2 in $[1, 20]$
- 1,000,000 trials per σ_2
- generate c_1 and c_3 from standard Gaussian distributions, and c_2 from $N(0, \sigma_2)$ each trial
- fit data to $g(x) = ax^{-0.9}$ using scipy’s `curve_fit` function
- increment a until g is an upper bound curve
- select maximum a
Piecewise Variance Ratio: $\sigma_2 \geq 1$ Results II

$$g(x) = 6.5x^{-0.9}$$

Figure: $f(x) = c_1 + c_2x + c_3x^2$

Figure: $f(x) = c_1 + c_2x^{99} + c_3x^{100}$
Further Work

- Tighter bound lines (especially for $\sigma \geq 1$)?
- Coefficient meaning for $\sigma \geq 1$?
 - Possible dependence on spread?
- Can we establish theoretical bounds that support these experimental results?
- Can we otherwise characterize the polynomials which fail?
Thank you for listening!

Extra thanks to Prof. Maurice Rojas, Joann Coronado, and the National Science Foundation.