Characterizing Codes with Three Maximal Codewords

Clare Spinner

University of Portland

REU 2020
Texas A&M University

July 20, 2020
Overview

1. Biological Motivation
2. Definitions
3. Goal
4. Results
Biological Motivation

- Encode spatial structure
- Associate neurons to regions of space
- Precisely fire in receptive fields

Figure: Neuron firing pattern
Figure: Place Cell Example
Definitions

Neural Code

- A neural code C on n neurons is a set of subsets of $[n]$ (called codewords), i.e. $C \subseteq 2^n$.
- A maximal codeword in C is a codeword that is not properly contained in any other codeword in C.
- Convex if it can be realized by a set of convex sets $U_1, U_2, \ldots, U_n \subseteq \mathbb{R}^d$. A code’s minimal embedding dimension is the smallest value of d for which this is possible.

Example

$C = \{0, 1, 2, 3, 12, 23, 34, 13, 123, 234\}$, where $n = 4$.

Clare Spinner (University of Portland) Characterizing Codes July 20, 2020 5 / 22
Simplicial Complexes

An abstract *simplicial complex* on \(n \) vertices is a nonempty set of subsets (faces) of \([n]\) that is closed under taking subsets.

For a code \(C \) on \(n \) neurons, \(\Delta(C) \) is the smallest simplicial complex on \([n]\) that contains \(C \):

\[
\Delta(C) : = \{ \omega \subseteq [n] \mid \omega \subseteq \sigma \text{ for some } \sigma \in C \}.
\]

Example

\[
C = \{\emptyset, 1, 2, 3, 12, 23, 34, 13, 123, 234\}
\]

\[
\Delta(C) = \{123, 234, 13, 34, 23, 12, 24, 4, 3, 2, 1, \emptyset\}
\]
For a face $\sigma \in \Delta$, the link of σ in Δ is the simplicial complex

$$Lk_\Delta(\sigma): = \{ \omega \subseteq \Delta \mid \sigma \cap \omega = \emptyset, \sigma \cup \omega \in \Delta \}.$$
Definitions Continued

Contractible

A set is *contractible* if it can be reduced to one of its points by a continuous deformation.

Local Obstruction

If $Lk_\Delta(\sigma)$ is NOT contractible and $\sigma \notin C$, a local obstruction occurs.

- σ is an intersection of maximal codewords.
- Local obstructions imply non-convexity.
Max-intersection-complete

A code is *max-intersection-complete* if any arbitrary intersection of maximal codewords is in the original code.

- Max-intersection-complete \Rightarrow convexity

Example

Max-intersection-complete code:

- $C = \{123, 234, 145, 23, 4, 1\}$

Non max-intersection-complete code:

- $C = \{123, 234, 145, 23\}$
Overarching Goal: Completely characterize codes with 3 maximal codewords

1. How to determine contractibility of triplewise intersections
2. Can we produce convex (open/closed) realizations for all codes
3. What are the embedding dimensions for the minimal/full codes
Lemma 4.7, (Curto et al.)

Let Δ be a simplicial complex. If $\sigma = \tau_1 \cap \tau_2$, where τ_1, τ_2 are distinct facets of Δ, and σ is not contained in any other facet of Δ, then the $Lk_\sigma(\Delta)$ is not contractible.

Thus, we only have to look at the triplewise intersection.

Case 1 - Link of Triplewise is Non-Contractible
- All other cases

Case 2 - Link of Triplewise is Contractible
- Triplewise intersection is non-empty and there are exactly 2 distinct pairwise intersections
Contractible

$\Delta(C) = \{123, 124, 1356\}$ F_1, F_2, F_3

$F_1 \cap F_2 \cap F_3 = \{1\}$
$F_1 \cap F_2 = \{12\}$
$F_1 \cap F_3 = \{13\}$
$F_2 \cap F_3 = \{1\}$
Question: Does the absence of local obstructions imply convexity for codes with 3 maximal codewords?

Known Results

- max-intersection-complete \Rightarrow convex \Rightarrow no local obstructions
- max-intersection-complete $\not\Rightarrow$ convex ??? no local obstructions
 - $\not\Rightarrow$ for codes with 4 or more maximal codewords
Assume C has no local obstructions

- **Case 1: Non-contractible link**
 - All intersections must be contained in C, thus max-intersection-complete

- **Case 2: Contractible link**
 - C is not required to be max-intersection-complete in order to have no local obstructions. Thus, we must provide a convex realization that such codes are indeed convex.

Recall: contractible link if triplewise is nonempty & exactly 2 distinct pairwise
A minimal code is the smallest code with no local obstructions.

Example: \(C_{\text{min}}(\Delta) = \{123, 124, 1356, 13, 12, 1\} \)

Convex Realization for Case 2 Codes

Given a neural code \(C \) with three maximal codewords \(F_a, F_b, F_c \) such that \(F_a \cap F_b \cap F_c = \sigma \neq \emptyset \), \(F_a \cap F_b \neq \sigma \), \(F_b \cap F_c \neq \sigma \) and \(F_a \cap F_c = \sigma \). A convex (open/closed) realization of \(C_{\text{min}}(\Delta) \) can be constructed in dimension 1 such that the codewords appear in the following order:
Question: Do no local obstructions imply convexity for codes with 3 maximal codewords?

Response: Yes. Assume \mathcal{C} has no local obstructions.

1. Case 1 - Contractible: Convex Realization
2. Case 2 - Non-contractible: Max-\cap-complete
Convex Realizations

Figure: Realization of $C_{\text{min}}(\Delta)$ in Dimension 2
Figure: Realization of the code $\mathcal{C} = \{F_a, F_b, F_c, F_a \cap F_b, F_b \cap F_c, c_1, c_2\}$

$C_{\text{min}}(\Delta) \subseteq \mathcal{C} \subseteq \Delta$
Embedding Dimension (Cruz et al.)

- For a minimal code, $C_{\text{min}}(\Delta)$, consisting of only max codewords and their intersections, there exists an open/closed convex realization of $C_{\text{min}}(\Delta)$ in \mathbb{R}^{k-1}, where k is the number of max codewords.
- Furthermore, by going to \mathbb{R}^k, you can get a realization of any code of the same simplicial complex that contains the minimal code.

Example

- $C_{\text{min}}(\Delta) = \{123, 124, 1356, 13, 12, 1\}$ (Realizable in 2D)
- For a code, C, such that $C_{\text{min}}(\Delta) \subseteq C \subseteq \Delta$ (Realizable in 3D)
 - $C = \{123, 124, 1356, 13, 12, 1, 2, 3, 4\}$
Embedding Dimension

- Expansion upon the result from Cruz et al:

Table: Minimal embedding dimension of $C_{min}(\Delta)$ based on the number of pairwise intersections distinct from the triplewise

<table>
<thead>
<tr>
<th>Embedding Dimension</th>
<th>Pairwise Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Theorem 3.6 (Johnston - Spinner)

If C is a neural code with exactly 3 maximal codewords, then the minimal embedding dimension is at most 2.
Thank you for listening!

Mentors
- Dr. Anne Shiu
- Alexander Ruys de Perez
- Dr. Ola Sobieska Snyder

Source of Funding
- National Science Foundation

Institution
- Texas A&M University
Cruz, Joshua and Giusti, Chad and Itskov, Vladimir and Kronholm, Bill (2019)
On open and closed convex codes
Discrete & Computational Geometry 61(2), 247 – 270.

Curto, Carina and Gross, Elizabeth and Jeffries, Jack and Morrison, Katherine and Omar, Mohamed and Rosen, Zvi and Shiu, Anne and Youngs, Nora (2017)
What Makes a Neural Code Convex?

Giusti, Chad and Itskov, Vladimir (2014)
A No-Go Theorem for One-Layer Feedforward Networks
Neural Computation 26(11), 2527 – 2540.

Lienkaemper, Caitlin and Shiu, Anne and Woodstock, Zev (2017)
Obstructions to convexity in neural codes

Zvi Rosen and Yan X. Zhang (2017)
Convex Neural Codes in Dimension 1