Solving Trinomials over \mathbb{Q}_p

Elliott Fairchild

July 27, 2021
Problem

Let \(f(x) = c_1x^{a_1} + c_2x^{a_2} + c_3x^{a_3} \in \mathbb{Z}[x] \). How many roots of \(f \) over \(\mathbb{Z}/(p^k) \) are there, and where do they lie?
Problem

Let $f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

Can information about roots of f over $\mathbb{Z}/(p)$ say anything about roots of f over $\mathbb{Z}/(p^k)$?
Problem

Let \(f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x] \). How many roots of \(f \) over \(\mathbb{Z}/(p^k) \) are there, and where do they lie?

- Can information about roots of \(f \) over \(\mathbb{Z}/(p) \) say anything about roots of \(f \) over \(\mathbb{Z}/(p^k) \)?
- If the root is simple, then Hensel’s Lemma gives us the desired result.
Problem

Let \(f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x] \). How many roots of \(f \) over \(\mathbb{Z}/(p^k) \) are there, and where do they lie?

\begin{itemize}
 \item Can information about roots of \(f \) over \(\mathbb{Z}/(p) \) say anything about roots of \(f \) over \(\mathbb{Z}/(p^k) \)?
 \item If the root is simple, then Hensel’s Lemma gives us the desired result.
 \item Degenerate roots are more tricky...
\end{itemize}
Solving Trinomials

Problem

Let \(f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x] \). How many roots of \(f \) over \(\mathbb{Z}/(p^k) \) are there, and where do they lie?

- Can information about roots of \(f \) over \(\mathbb{Z}/(p) \) say anything about roots of \(f \) over \(\mathbb{Z}/(p^k) \)?
- If the root is simple, then Hensel’s Lemma gives us the desired result.
- Degenerate roots are more tricky...

Example

Let \(f(x) = x^2 \). Then \(f \) has a single degenerate root at 0 over \(\mathbb{Z}/(p) \), but over \(\mathbb{Z}/(p^2) \), the roots are given by \((0, p, \ldots, (p - 1)p)\).
Applications to Coding Theory

Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_1, \ldots, q_ρ) of elements of $\mathbb{Z}/(p^k)$. Applications in error-correction involve computing roots of a polynomial $G \in \mathbb{Z}/(p^k) [x][y]$ over $\mathbb{Z}/(p^k)[x]$.
Applications to Coding Theory

Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_1, \ldots, q_ρ) of elements of $\mathbb{Z}/(p^k)$.

We can also represent K with an element F of $(\mathbb{Z}/(p^k))[x]_{<\rho}$ by letting q_i equal the coefficient of x^{i-1}.
Applications to Coding Theory

• Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_1, \ldots, q_ρ) of elements of $\mathbb{Z}/(p^k)$.

• We can also represent K with an element F of $(\mathbb{Z}/(p^k))[x]_{<\rho}$ by letting q_i equal the coefficient of x^{i-1}.

• Applications in error-correction involve computing roots of a polynomial $G \in (\mathbb{Z}/(p^k))[x][y]$ over $(\mathbb{Z}/(p^k))[x]$.
Passing to \mathbb{Q}_p

We can efficiently encode the roots of f over $\mathbb{Z}/(p^k)$ for successively larger k by finding the roots of f over \mathbb{Q}_p.

- Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\gcd(n, d) = 1$. The p-adic valuation $\text{ord}_p(\cdot)$ is defined on \mathbb{Q} to be $\text{ord}_p(a/b) = k$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)
We can efficiently encode the roots of f over $\mathbb{Z}/(p^k)$ for successively larger k by finding the roots of f over \mathbb{Q}_p.

Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\gcd(n, d) = 1$. The p-adic valuation $\text{ord}_p(\cdot)$ is defined on \mathbb{Q} to be $\text{ord}_p(a/b) = k$.

Define the p-adic absolute value $|\cdot|_p$ on \mathbb{Q} by $|\frac{a}{b}|_p = p^{-\text{ord}_p(a/b)}$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)
We can efficiently encode the roots of f over $\mathbb{Z}/(p^k)$ for successively larger k by finding the roots of f over \mathbb{Q}_p.

- Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\gcd(n, d) = 1$. The p-adic valuation $\text{ord}_p(\cdot)$ is defined on \mathbb{Q} to be $\text{ord}_p(a/b) = k$.
- Define the p-adic absolute value $|\cdot|_p$ on \mathbb{Q} by $|\frac{a}{b}|_p = p^{-\text{ord}_p(a/b)}$.
- The completion of \mathbb{Q} with respect to $|\cdot|$ is denoted by \mathbb{Q}_p, the p-adic numbers.

Figure 1: 3-adic integers (Quanta Magazine, 2020)
We can efficiently encode the roots of \(f \) over \(\mathbb{Z}/(p^k) \) for successively larger \(k \) by finding the roots of \(f \) over \(\mathbb{Q}_p \).

* Observe we can uniquely write any rational \(\frac{a}{b} \) as \(\frac{a}{b} = p^k \frac{n}{d} \), where \(k \in \mathbb{Z} \) and \(\gcd(n,d) = 1 \). The \(p \)-adic valuation \(\text{ord}_p(\cdot) \) is defined on \(\mathbb{Q} \) to be \(\text{ord}_p(a/b) = k \).

* Define the \(p \)-adic absolute value \(|\cdot|_p \) on \(\mathbb{Q} \) by \(|\frac{a}{b}|_p = p^{-\text{ord}_p(a/b)} \).

* The completion of \(\mathbb{Q} \) with respect to \(|\cdot| \) is denoted by \(\mathbb{Q}_p \), the \(p \)-adic numbers.

* \(p \)-adic numbers can also be expressed by formal series \(\sum_{j=s}^{\infty} a_j p^j \), where \(a_j \in \{0, \ldots, p-1\} \).
Consider the sequence obtained by extracting the digits of the non-1 root of $x^2 - 1$ over \mathbb{Z}_3: $2, 2 + 2 \cdot 3, 2 + 2 \cdot 3 + 2 \cdot 3^2, \ldots$

Both sequences converge at a geometric rate! Applying Newton’s method to either allows both to converge even faster!

Consider the sequence obtained by applying the bisection method to $\sqrt{2}$ in the interval $[1, 2]$: $1, 1.25, 1.375, 1.4375, \ldots$
How to solve over \mathbb{Q}_p: Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p.

An example over \mathbb{Q}_{17}:

$$f(x) = 1 - x^{340}$$
Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f}, define

$$s(f, \zeta) := \min_{i \geq 0} \{ i + \text{ord}_p f^{(i)}(\zeta) \}.$$

An example over \mathbb{Q}_{17}:

$$f(x) = 1 - x^{340}$$

$$s(f, 1) = 2 \quad s(f, 4) = 2 \quad s(f, 13) = 2 \quad s(f, 16) = 2$$
How to solve over \mathbb{Q}_p: Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f}, define

$$s(f, \zeta) := \min_{i \geq 0} \{ i + \ord_p \frac{f^{(i)}(\zeta)}{i!} \}.$$

For $k \in \mathbb{N}$, $i \geq 1$, define inductively a set $T_{p,k}(f)$ of pairs $(f_{i-1}, k_{i-1}) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows:

An example over \mathbb{Q}_{17}:

$$(f(x) = 1 - x^{340}, k \geq 3)$$

$s(f, 1) = 2$
$s(f, 4) = 2$
$s(f, 13) = 2$
$s(f, 16) = 2$
How to solve over \mathbb{Q}_p: Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f}, define $s(f, \zeta) := \min_{i \geq 0} \{ i + \text{ord}_p \frac{f(i)(\zeta)}{i!} \}$. For $k \in \mathbb{N}$, $i \geq 1$, define inductively a set $T_{p,k}(f)$ of pairs $(f_{i-1}, k_{i-1}) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows: Set $(f_0, k_0) := (f, k)$, then for $i \geq 1$ with $(f_{i-1}, k_{i-1}) \in T_{p,k}(f)$, and any degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ with $s_{i-1} := s(f_{i-1}, \zeta_{i-1})$, let $k_{i} := k_{i-1} - s_{i-1}$, $f_i(x) := p^{-s(f_{i-1}, \mu, \zeta_{i-1})} f_{i-1}(\zeta_{i-1} + px) \mod p^{k_{i}}$, and include (f_i, k_i) in $T_{p,k}(f)$.

An example over \mathbb{Q}_{17}:

$$ (f(x) = 1 - x^{340}, k \geq 3) $$

$$ (14x, k - 2) \quad (12x + 10, k - 2) \quad (5x + 15, k - 2) \quad (3x + 3, k - 2) $$

$$ 1 + 0 \cdot 17 + \ldots 4 + 2 \cdot 17 + 13 + 14 \cdot 17 + 16 + 16 \cdot 17 + \ldots $$
How to solve over \mathbb{Q}_p: Trees

Definition

Define $T_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $T_{p,k}(f)$.

An example over \mathbb{Q}_3:

$(f_0(x) = x^9 - 1, k_0 \geq 3)$
How to solve over \mathbb{Q}_p: Trees

Definition

Define $T_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $T_{p,k}(f)$. (ii) The non-root nodes of $T_{p,k}(f)$ are labeled by the $(f_i, k_i) \in T_{p,k}(f)$ for $i \geq 1$.

An example over \mathbb{Q}_3:

$(f_0(x) = 1 - x^9, k_0 \geq 3)$

$\tilde{f}_1 = x$
How to solve over \mathbb{Q}_p: Trees

Definition

Define $\mathcal{T}_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $\mathcal{T}_{p,k}(f)$. (ii) The non-root nodes of $\mathcal{T}_{p,k}(f)$ are labeled by the $(f_i, k_i) \in T_{p,k}(f)$ for $i \geq 1$. (iii) There is an edge from node (f_{i-1}, k_{i-1}) to node (f_i, k_i) iff there is a degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ of \tilde{f}_{i-1} with $s(f_{i-1}, \zeta_{i-1}) \in \{2, \ldots, k_{i-1} - 1\}$.

An example over \mathbb{Q}_3:

\[(f_0(x) = 1 - x^9, k_0 \geq 3) \]

\[(f_1, k - 2), \tilde{f}_1 = x \]
Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0 c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.
Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1x^d \in \mathbb{Z}[x]$ with $c_0 c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.

- The tree gives approximate roots of f in just two digits!
Theorem (Rojas and Zhu, 2021)

Following the notation of $T_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0 c_1 \neq 0 \mod p$. Then for all k, the tree $T_{p,k}(f)$ has depth at most 1.

- The tree gives approximate roots of f in just two digits!
- This gives complexity of root-approximating algorithms linear in $\gcd(d, p - 1)$ and polynomial in $\log(dpH)$, where $H = \max\{c_0, c_1\}$.
Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of $T_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0 c_1 \neq 0 \mod p$. Then for all k, the tree $T_{p,k}(f)$ has depth at most 1.

- The tree gives approximate roots of f in just two digits!
- This gives complexity of root-approximating algorithms linear in $\gcd(d, p - 1)$ and polynomial in $\log(dpH)$, where $H = \max\{c_0, c_1\}$
- Also, the roots are never less than $1/p$ apart.
Theorem (Rojas and Zhu, 2021)

Let \(f = c_1 + c_2 x^{a_2} + c_3 x^{a_3} \) be a trinomial with \(0 < a_2 < a_3 \), \(p \nmid c_1 \). Define \(S_0 = \max\{s(f, \zeta_0) \mid \zeta_0 \text{ is a degenerate root of } f \text{ over } \{0, 1, \ldots, p - 1\}\} \) and \(D = \max\{\text{ord}_p(\zeta - \xi) \mid \zeta, \xi \text{ are non-degenerate roots of } f \text{ over } \mathbb{Q}_p\} \), setting either quantity to 0 if not applicable. Then \(k \geq 1 + S_0 \min\{1, D\} + M_p \max\{D - 1, 0\} \) (where \(M_p = 4, 3, \) or \(2, \) according to \(p = 2, p = 3, p \geq 5 \)) guarantees \(T_{p,k} \) has depth at least \(D \).
Theorem (Rojas and Zhu, 2021)

Let \(f = c_1 + c_2 x^{a_2} + c_3 x^{a_3} \) be a trinomial with \(0 < a_2 < a_3, \ p \nmid c_1 \). Define
\[S_0 = \max\{s(f, \zeta_0) \mid \zeta_0 \text{ is a degenerate root of } f \text{ over } \{0, 1, \ldots p - 1\} \} \]
and
\[D = \max\{\text{ord}_p(\zeta - \xi) \mid \zeta, \xi \text{ are non-degenerate roots of } f \text{ over } \mathbb{Q}_p\}, \]
setting either quantity to 0 if not applicable. Then \(k \geq 1 + S_0 \min\{1, D\} + M_p \max\{D - 1, 0\} \) (where \(M_p = 4, 3, \text{ or } 2, \text{ according to } p = 2, p = 3, p \geq 5 \)) guarantees \(T_{p,k} \) has depth at least \(D \).

\[* \] Explicit, but worse (not \(O(1) \)) on \(k \) than in the binomial case.

\[* \] The analogous root spacing bound induced is given by
\[|\log |z_1 - z_2|_p| = O(p \log^2(dH) \log_p(d)). \]

\[* \] Two simple families of examples prove that the minimal root spacing is at least linear in \(\log(dH) \) and that the depth of \(k \) has dependence on \(D \) and \(S_0 \).
Two families of examples

Example
The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that $\log |z_1 - z_2|_p = -\log(H - 2)$.

[Continued on next page]
Two families of examples

Example

The family $g_p(x) = x^2 - (2 + p^i)x + (1 + p^i)$ has roots $z_1 = 1$, $z_2 = 1 + p^i$, so that $\log |z_1 - z_2|_p = - \log (H - 2)$.

It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.
Two families of examples

Example

The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that $\log |z_1 - z_2|_p = -\log(H - 2)$.

- It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $T_{p,k}(g_p(x))$.
- $g_p(x) = x^2 - 2x + 1$ has degenerate root 1 over \mathbb{Z}_p, with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 - 2$ and $f_1 = p^{-2}((1 + px)^2 - (2 + p^j)(1 + px) + 1 + p^j) = x^2 - p^{j-1}x$ mod p^{k_1}.
Two families of examples

Example

The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that

$$\log |z_1 - z_2|_p = -\log(H - 2).$$

* It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $T_{p,k}(g_p(x))$.

* $g_p(x) = x^2 - 2x + 1$ has degenerate root 1 over \mathbb{Z}_p, with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 - 2$ and $f_1 = p^{-2}((1 + px)^2 - (2 + p^j)(1 + px) + 1 + p^j) = x^2 - p^{j-1}x$ mod p^{k_1}.

* Proceeding, we obtain a chain $f_i = x^2 - p^{j-i}x$ for $i \leq j$. At $i = j$, the mod-p reduction of f_i splits into non-degenerate roots 0 and 1.
Two families of examples

Example

The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that $\log |z_1 - z_2|_p = -\log(H - 2)$.

- It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $T_{p,k}(g_p(x))$.

- $g_p^\ast(x) = x^2 - 2x + 1$ has degenerate root 1 over \mathbb{Z}_p, with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 - 2$ and $f_1 = p^{-2}((1 + px)^2 - (2 + p^j)(1 + px) + 1 + p^j) = x^2 - p^{j-1}x \mod p^{k_1}$.

- Proceeding, we obtain a chain $f_i = x^2 - p^{j-i}x$ for $i \leq j$. At $i = j$, the mod-p reduction of f_i splits into non-degenerate roots 0 and 1.

- We see $k \geq 2j + 1 = 1 + S_0 + 2(D - 1)$ is required to detect both non-degenerate roots in the tree.
Two families of examples

Example

The family \(g_p(x) = x^2 - (2 + p^i)x + (1 + p^i) \) has roots \(z_1 = 1, z_2 = 1 + p^i \), so that \(\log|z_1 - z_2|_p = -\log(H - 2) \).

* It is clear from factoring that \(g_p(x) = f_0(x) \) has its roots as claimed. We now make use of the tree \(T_{p,k}(g_p(x)) \).

* \(g_p(x) = x^2 - 2x + 1 \) has degenerate root 1 over \(\mathbb{Z}_p \), with \(s_0(g_p(x), 1) = 2 \). We then have \(k_1 = k_0 - 2 \) and \(f_1 = p^{-2}((1 + px)^2 - (2 + p^i)(1 + px) + 1 + p^i) = x^2 - p^{i-1}x \mod p^{k_1} \).

* Proceeding, we obtain a chain \(f_i = x^2 - p^{j-i}x \) for \(i \leq j \). At \(i = j \), the mod-\(p \) reduction of \(f_i \) splits into non-degenerate roots 0 and 1.

* We see \(k \geq 2j + 1 = 1 + S_0 + 2(D - 1) \) is required to detect both non-degenerate roots in the tree.

Example

Similarly, we can prove family \(h_p(x) = x^{p^i+2} - 2x + 1 \) has roots \(z_1 = 1, z_2 = 1 + (p - 1)p^i + \ldots \) (so that \(\log|z_1 - z_2|_p = -\log(d - 2) \)) and extremal \(k \).
Acknowledgements

- Professor Rojas
- TAs and Professors
- TAMU and NSF

Thank you for listening!