Counting and Finding Real Roots of Univariate Trinomials

Cydnee Evans

July 24, 2023
Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series.
Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series. Given a trinomial of the form

\[f(x) = 1 - cx^m + x^n \]
Previously, we discussed how the roots of trinomials of arbitrary degree can be expressed as power series. Given a trinomial of the form

\[f(x) = 1 - cx^m + x^n \]

where \(c \neq 0 \), \(0 < m < n \), and \(\gcd(m, n) = 1 \) and defining

\[r_{m,n} := \left| \frac{n}{m^n (n - m)^{(n-m)/n}} \right| \]

there are various cases when we compare the coefficient \(c \) to \(r_{m,n} \).
When $c > r_{m,n}$, there are two positive roots.
Case 1

When $c > r_{m,n}$, there are two positive roots.

- The smaller root of f is given by

$$x_{\text{low}}(c) = \frac{1}{c^m} \left[1 + \sum_{k=1}^{\infty} \left(\frac{1}{km^k} \cdot \prod_{j=1}^{k-1} \frac{1 + kn - jm}{j} \right) \frac{1}{c^m} \right]$$
Case 1

When $c > r_{m,n}$, there are two positive roots.

- The smaller root of f is given by

$$x_{\text{low}}(c) = \frac{1}{c^m} \left[1 + \sum_{k=1}^{\infty} \left(\frac{1}{km^k} \cdot \prod_{j=1}^{k-1} \frac{1 + kn - jm}{j} \right) \frac{1}{c^m} \right]$$

- The larger root of f is given by

$$x_{\text{hi}}(c) = c^{\frac{1}{(n-m)}} \left[1 - \sum_{k=1}^{\infty} \left(\frac{1}{k(n-m)^k} \cdot \prod_{j=1}^{k-1} \frac{km + j(n - m) - 1}{j} \right) \frac{1}{c^{\frac{kn}{(n-m)}}} \right]$$
Case 2

When \(c < r_{m,n} \), \(f \) has one positive root
Case 2

When \(c < r_{m,n} \), \(f \) has one positive root

- The following series converges near the root of \(f \)

\[
x_{\text{mid}}(c) = (-1)^{\frac{1}{n}} \left[1 + \sum_{k=1}^{\infty} \left(\frac{1}{km^k} \cdot \prod_{j=1}^{k-1} \frac{1 + km - jn}{j} \right) \left(-1 \right)^{\frac{m-n}{n}} c^k \right]
\]
Case 2

When $c < r_{m.n}$, f has one positive root

- The following series converges near the root of f

$$x_{mid}(c) = (-1)^{\frac{1}{n}} \left[1 + \sum_{k=1}^{\infty} \left(\frac{1}{km^k} \prod_{j=1}^{k-1} \frac{1 + km - jn}{j} \right) ((-1)^{\frac{m-n}{n}} c)^k \right]$$

However, how can you solve without knowing how many roots there are?
Let us consider

\[f(x) = c_1 + c_2x^2 + c_3x^3 \]
Let us consider

\[f(x) = c_1 + c_2x^{a_2} + c_3x^{a_3} \]

with

- \(c_1, c_2, c_3 \neq 0 \)
- \(0 < a_2 < a_3 \)
- \(c_3 > 0 \)
Let us consider

\[f(x) = c_1 + c_2x^{a_2} + c_3x^{a_3} \]

with

- \(c_1, c_2, c_3 \neq 0 \)
- \(0 < a_2 < a_3 \)
- \(c_3 > 0 \)

By examining the sign of the coefficients, we can determine the number of roots \(f \) will have

1. \(c_1, c_2 > 0 \) \(\Rightarrow \) 0 roots
2. \(c_1, c_2 < 0 \) \(\Rightarrow \) 1 root
3. \(c_1 < 0 \) and \(c_2 > 0 \) \(\Rightarrow \) 1 root
Root Counting

When \(c_1 > 0 \) and \(c_2 < 0 \), \(f \) can have 0, 1, or 2 roots. By evaluating the modified A-discriminant:

\[
Ξ_A = \left(\frac{c_1}{a_3 - a_2} \right)^{a_3-a_2} \left(\frac{c_2}{-a_3} \right)^{-a_3} \left(\frac{c_3}{a_2} \right)^{a_2} - 1
\]
Root Counting

When $c_1 > 0$ and $c_2 < 0$, f can have 0, 1, or 2 roots.

By evaluating the modified A-discriminant:

$$\Xi_A = \left(\frac{c_1}{a_3 - a_2}\right)^{a_3 - a_2} \left(\frac{c_2}{-a_3}\right)^{-a_3} \left(\frac{c_3}{a_2}\right)^{a_2} - 1$$

if this value is:

1. $> 0 \Rightarrow 2$ roots
2. $= 0 \Rightarrow 1$ root
3. $< 0 \Rightarrow 0$ roots
Baker’s Theorem

This evaluation becomes complex with large coefficients, which is why we take advantage of an application of Baker’s Theorem.
This evaluation becomes complex with large coefficients, which is why we take advantage of an application of Baker’s Theorem.

Baker’s Theorem (1966)

If $\alpha_i \in \mathbb{Q}_+$, $b_i \in \mathbb{Z}$ with $\log A_i := \max\{ h(\alpha_i), |\log(\alpha_i)|, 0.16 \}$, $B := \max\{|b_i|\}$, then

$$\sum_{i=1}^{m} b_i \log(\alpha_i) \neq 0 \Rightarrow$$

$$\log \left| \sum_{i=1}^{m} b_i \log(\alpha_i) \right| > -1.4 \cdot m^{4.5} \cdot 30^m \cdot (1 + \log(B)) \prod_{i=1}^{m} \log(A_i)$$
Approximating Logarithms

Lemma
Given any $x \in \mathbb{Q}_+$ of height h, and $\ell \in \mathbb{N}$ with $\ell \geq h$ we can compute $\lfloor \log_2 \max\{1, \log(x)\} \rfloor$ and the ℓ most significant bits of $\log(x)$ in time $O(\ell \log^2(\ell))$.
Example

\[f(x) = c_1 + c_2 x^2 + c_3 x^{13} \]
Example

\[f(x) = c_1 + c_2 x^2 + c_3 x^{13} \]

Evaluating the modified A-discriminant and taking log

\[11 \log \left(\frac{c_1}{11} \right) - 13 \log \left(\frac{c_2}{-13} \right) + 2 \log \left(\frac{c_3}{2} \right) \]
Example

\[f(x) = c_1 + c_2 x^2 + c_3 x^{13} \]

Evaluating the modified A-discriminant and taking log

\[11 \log\left(\frac{c_1}{11}\right) - 13 \log\left(\frac{c_2}{-13}\right) + 2 \log\left(\frac{c_3}{2}\right) \]

We can approximate using

\[11 L_1 - 13 L_2 + 2 L_3 \]

where \(L_i \approx \log(\alpha_i) \) up to error \(< \frac{1}{10} (-1.4 \cdot m^{4.5} 30^{m+3} (1 + \log(B)) \prod_{i=1}^{m} \log(A_i)) \)
Case 3

Consider the trinomial

\[f(x) = 1 - 1.5362173x^2 + x^{13} \]
Consider the trinomial

\[f(x) = 1 - 1.5362173x^2 + x^{13} \]

Here \(c > r_{m,n} = 1.5362171\ldots \), so we should expect to use \(x_{hi}(c) \) and \(x_{low}(c) \) to find the roots.
Consider the trinomial

\[f(x) = 1 - 1.5362173x^2 + x^{13} \]

- Here \(c > r_{m,n} = 1.5362171\ldots \), so we should expect to use \(x_{hi}(c) \) and \(x_{low}(c) \) to find the roots.
- However these series do not produce 2 correct decimal places of until at least 20,000 terms are used.
Consider the trinomial

\[f(x) = 1 - 1.5362173x^2 + x^{13} \]

- Here \(c > r_{m,n} = 1.5362171 \ldots \), so we should expect to use \(x_{hi}(c) \) and \(x_{low}(c) \) to find the roots.
- However these series do not produce 2 correct decimal places of until at least 20,000 terms are used.

So, we need a new series to solve this case.
When $|c| \approx r_{m,n}$ the following pair of series give the roots of f
When $|c| \approx r_{m,n}$ the following pair of series give the roots of f

\[x_{\text{sing}}^{\pm} = \zeta \sum_{k=0}^{\infty} \frac{\gamma_k}{(\pm \sqrt{(n-m)r})^k} (c - r)^{k/2} \]

where $\zeta = \left(\frac{m}{n-m}\right)^{1/n}$ and $\gamma_k \in \mathbb{Q}[m, n]$
Singular Series

When $|c| \approx r_{m,n}$ the following pair of series give the roots of f

$$x_{\text{sing}}^{\pm} = \zeta \sum_{k=0}^{\infty} \frac{\gamma_k}{(\pm \sqrt{(n-m)r})^k} (c-r)^{k/2}$$

where $\zeta = \left(\frac{m}{n-m} \right)^{1/n}$ and $\gamma_k \in \mathbb{Q}[m, n]$

We can find γ_k terms algorithmically, for example it can be shown that

$$\gamma_0 = \gamma_1 = 1, \quad \gamma_2 = \frac{2m-n+3}{6}$$
When $|c| \approx r_{m,n}$ the following pair of series give the roots of f

$$x_{\text{sing}}^{\pm} = \zeta \sum_{k=0}^{\infty} \frac{\gamma_k}{(\pm \sqrt{(n-m)r})^k} (c - r)^{k/2}$$

where $\zeta = \left(\frac{m}{n-m}\right)^{1/n}$ and $\gamma_k \in \mathbb{Q}[m, n]$.

We can find γ_k terms algorithmically, for example it can be shown that

$$\gamma_0 = \gamma_1 = 1, \quad \gamma_2 = \frac{2m - n + 3}{6}$$

We know γ_k has degree $k - 1$ in (m, n), but an explicit formula is not currently known.
Terms needed for error < $1/1000$ for approximation of larger root of $f(x) = 1 - cx^2 + x^{13}$ for varying values of c:

<table>
<thead>
<tr>
<th>c</th>
<th>x_{hi}</th>
<th>x_{sing}^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5362173</td>
<td>>20000</td>
<td>2</td>
</tr>
<tr>
<td>1.7</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>
Thank you!