Developing a New Tool for Modeling the Topology of Zero Sets of Bivariate Pentanomials

Vaishali Miriyagalla

TAMU

July 24, 2023
Overview

- Terminology and Background
- Motivation and Goals
- Matlab Program
- Results
Near Circuit Polynomials

Support

Def: Given a polynomial f, the **support** is its set of exponent vectors.

E.g. $f(x, y) = 1 - x - y + x^4y + xy^4$, support $A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$.
Near Circuit Polynomials

Support

Def: Given a polynomial f, the **support** is its set of exponent vectors.

E.g. $f(x, y) = 1 - x - y + x^4y + xy^4$, support $\mathcal{A} = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$

Near Circuit Polynomials

Def: A polynomial whose support $\mathcal{A} = [a_1, \ldots, a_{n+3}] \in \mathbb{Z}^{n \times (n+3)}$ yields

$\begin{bmatrix} 1 & \cdots & 1 \\ a_1 & \cdots & a_{n+3} \end{bmatrix}$

having rank $n + 1$.

E.g. a **bivariate pentanomial** has 2 variables and 5 terms.

$n = \text{the number of variables}$
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

- **Univariate** ($n=1$): number of zeros or roots
- **Bivariate** ($n=2$): number of pieces (connected components)

A-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set

For near circuits, can simplify to a bivariate polynomial: **reduced**

Recall quadratics from Algebra 1:

If $f(x) = ax^2 + bx + c$, then the **discriminant** = $b^2 - 4ac$

A-discriminant variety: where A-discriminant = 0

i.e. critical points/curves where the topology of the zero set changes
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Topology of Zero sets:
- Univariate \((n = 1)\): number of zeros or roots
- Bivariate \((n = 2)\): number of pieces (connected components)

A-discriminant polynomial: polynomial in coefficients of \(f\) vanishing when \(f\) has a singular zero set

For near circuits, can simplify to a bivariate polynomial: reduced

Recall quadratics from Algebra 1:
- if \(f(x) = ax^2 + bx + c\), then the discriminant = \(b^2 - 4ac\)

A-discriminant variety: where A-discriminant = 0
- i.e. critical points/curves where the topology of the zero set changes
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Topology of Zero sets:
- Univariate \((n = 1)\): number of zeros or roots
- Bivariate \((n = 2)\): number of pieces (connected components)

\(A\)-discriminant **polynomial**: polynomial in coefficients of \(f\) vanishing when \(f\) has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: **reduced**
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Topology of Zero sets:
- Univariate ($n = 1$): number of zeros or roots
- Bivariate ($n = 2$): number of pieces (connected components)

A-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: reduced
- Recall quadratics from Algebra 1:
 - if $f(x) = ax^2 + bx + c$, then the discriminant $= b^2 - 4ac$
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Topology of Zero sets:
- **Univariate** ($n = 1$): number of zeros or roots
- **Bivariate** ($n = 2$): number of pieces (connected components)

A-discriminant polynomial: polynomial in coefficients of f vanishing when f has a singular zero set

- For near circuits, can simplify to a bivariate polynomial: **reduced**
- Recall quadratics from Algebra 1:

 if $f(x) = ax^2 + bx + c$, then the discriminant $= b^2 - 4ac$
Zero sets and Discriminants

Zero set: set of real inputs that make a polynomial evaluate to zero

Topology of Zero sets:
- Univariate \((n = 1) \): number of zeros or roots
- Bivariate \((n = 2) \): number of pieces (connected components)

\(A \)-discriminant polynomial: polynomial in coefficients of \(f \) vanishing when \(f \) has a singular zero set
- For near circuits, can simplify to a bivariate polynomial: **reduced**
- Recall quadratics from Algebra 1:
 - if \(f(x) = ax^2 + bx + c \), then the discriminant = \(b^2 - 4ac \)

\(A \)-discriminant variety: where \(A \)-discriminant = 0
 - i.e. critical points/curves where the topology of the zero set changes
Reduced\(^1\) \(A\)-discriminant variety for \(A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}\)

\[
363087263602825104457728a^{32}b^8 - 2904698108822600835661824a^{29}b^{11} + 101644338087912924816384a^{26}b^{14} - 20332886761758205849632768a^{23}b^{17} + 25416108452197757312040960a^{20}b^{20} - 20332886761758205849632768a^{17}b^{23} + 101644338087912924816384a^{14}b^{26} - 2904698108822600835661824a^{11}b^{29} + 363087263602825104457728a^8b^{32} - 726174527205650208915456a^4b^4 + 5798049740657613386809344a^2b^7 + 3128237054780090405936128a^{25}b^{10} - 50571247933680984080252928a^{22}b^{13} - 191290255533750888626651136a^{16}b^6 + 482236618449489680142434304a^{16}b^9 - 36318931895713399018356736a^{13}b^{22} + 74489621423517087836405760a^{10}b^{25} + 12696707749111290371506176a^7b^{28} - 726174527205650208915456a^4b^4 + 363087263602825104457728a^{30} - 2839516313835012551147520a^{27}b^3 - 92973237722754317832683520a^{24}b^6 + 134703665565747736152637440a^{21}b^9 + 2535119422553880950892134400a^{18}b^{12} + 6930726608820725492905672704a^{15}b^{15} + 10397247952186084766590697472a^{12}b^{18} + 1368264254117216589547831296a^9b^{21} + 178810349707236426746167296a^6b^{24} - 97920096402288698535844352a^3b^{27} + 363087263602825104457728a^{30} + 51524645931445780035403776a^{23}b^2 - 382889518656122947982163968a^{20}b^5 - 4594348961140867552012926976a^{17}b^8 - 18138163316374406659527671808a^{14}b^{11} - 21319282121430982186963565692a^{11}b^{14} + 2514558123743644571580497920a^8b^{17} - 269737322421295126029533184a^{5}b^{20} - 20941053496075364622925824a^{2}b^{23} - 25511283567328457194995712a^9b - 2225676676963172933955937280a^{16}b^4 + 1359100063033685271054909440a^{13}b^{17} + 14323107664774924348979937280a^{10}b^{10} - 11483443502644561606909999616a^7b^{13} + 3842544435470347078152192a^{4}b^{16} + 3352996500536631555522560a^{19} - 557969223231079901560832a^{15} - 2845499698372999866809843712a^{12}b^3 - 4692084142913135619868721152a^9b^6 + 8896181413687124537286066176a^6b^9 - 828434941582623838008508416a^3b^{12} - 557969223231079901560832b^{15} + 16445468110480509036627840a^8b^{2} - 971141005960243113814917120a^5b^5 + 491069384583950065193975808a^2b^8 - 39459424776683996789577787136a^4b - 8568922617577790827960320a^4 + 41987654504771523593992227

\(^1\)Reduced coefficient vector is \(c := [1, 1, 1, a, b]\)
Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: **Horn-Kapranov Uniformization**
Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: **Horn-Kapranov Uniformization**

E.g. $f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 x y^4$

Add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$
Parametrize the \mathcal{A}-discriminant variety: **Horn-Kapranov Uniformization**

E.g. $f(x, y) = c_1 + c_2x + c_3y + c_4x^4y + c_5xy^4$

1. add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$

2. let \mathcal{B} be a 2×5 matrix whose columns form a basis for the right nullspace of $\hat{\mathcal{A}}$
Modeling the \mathcal{A}-discriminant Variety

Parametrize the \mathcal{A}-discriminant variety: **Horn-Kapranov Uniformization**

E.g. $f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 x y^4$

1. add a row of ones above \mathcal{A} to make $\hat{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$

2. let \mathcal{B} be a 2×5 matrix whose columns form a basis for the right nullspace of $\hat{\mathcal{A}}$

3. let λ be the variable of parametrization

4. $\log |\lambda \cdot \mathcal{B}^\top| \cdot \mathcal{B}$ parametrizes the \mathcal{A}-discriminant variety
E.g. \(f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 xy^4 \)

Parametrized \(\mathcal{A} \)-discriminant Variety
E.g. \(f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 xy^4 \)

Parametrized \(\mathcal{A} \)-discriminant Variety

Signed Contour: \(+ - - + + \)
Zero sets of $f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 xy^4$

Signed Contour: $+ - - + +$
Zero sets of $f(x, y) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 xy^4$

Signed Contour: $+ - - + +$

coefficients:

$[1, -\frac{3}{4}, -\frac{3}{4}, 1, 1]$

$[1, -1, -1, 1, 1]$

$[\frac{1}{2}, -1, -1, \frac{1}{2}, \frac{1}{2}]$
Motivation and Goals

- Explicitly drawing those zero sets is **NP hard**.
Motivation and Goals

- Explicitly drawing those zero sets is **NP hard**.

- We want to approximate the **isotopy type** (rough shape and number) of pieces of a zero set.
Motivation and Goals

- Explicitly drawing those zero sets is \textbf{NP hard}.

- We want to approximate the \textbf{isotopy type} (rough shape and number) of pieces of a zero set.

Matlab Program:

1. Draw parametrized A-discriminant variety and signed contours

2. Find which signed contours may have inner chambers

3. Determine isotopy type for outer chambers using Triangulations and Viro's Patchworking

4. Continue developing approximations to determine which chamber a given coefficient vector lies in.
Motivation and Goals

- Explicitly drawing those zero sets is **NP hard**.

- We want to approximate the **isotopy type** (rough shape and number) of pieces of a zero set.

Matlab Program:

1. Draw parametrized \mathcal{A}-discriminant variety and signed contours
2. Find which signed contours may have inner chambers
Motivation and Goals

- Explicitly drawing those zero sets is **NP hard**.

- We want to approximate the **isotopy type** (rough shape and number) of pieces of a zero set.

Matlab Program:

1. Draw parametrized A-discriminant variety and signed contours
2. Find which signed contours may have inner chambers
3. Determine isotopy type for outer chambers using Triangulations and Viro's Patchworking
Motivation and Goals

- Explicitly drawing those zero sets is **NP hard**.

- We want to approximate the **isotopy type** (rough shape and number) of pieces of a zero set.

Matlab Program:

1. Draw parametrized A-discriminant variety and signed contours
2. Find which signed contours may have inner chambers
3. Determine isotopy type for outer chambers using Triangulations and Viro’s Patchworking

- Continue developing approximations to determine which chamber a given coefficient vector lies in.
For near-circuits, there are at most n cusps within one signed contour.
For near-circuits, there are at most n cusps within one signed contour.

- For $n = 2 \rightarrow$ at most 2 cusps within one signed contour.
- If one signed contour has two cusps, we may have an inner chamber.
For near-circuits, there are at most n cusps within one signed contour.

- For $n = 2 \rightarrow$ at most 2 cusps within one signed contour.
- If one signed contour has two cusps, we may have an inner chamber.
- To eliminate the possibility of having an inner chamber, detect signed contours with two cusps (cusp: $\frac{dx}{dt} = 0$ and $\frac{dy}{dt} = 0$).
Background on Triangulations and Viro’s Patchworking

Simple e.g. $f(x) = c_1x + c_2y - c_3xy$: $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$
Background on Triangulations and Viro’s Patchworking

Simple e.g. \(f(x) = c_1x + c_2y - c_3xy: \mathcal{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \)

1. Plot exponent vectors as points and draw convex polytope
2. Label signs at each vertex
3. Draw outer normals from edges with vertices of opposite signs and connect them
Background on Triangulations and Viro’s Patchworking

Simple e.g. $f(x) = c_1 x + c_2 y - c_3 xy$: signs = $++-$

1. Plot exponent vectors as points and draw convex polytope
2. Label signs at each vertex
3. Draw outer normals from edges with vertices of opposite signs and connect them
Background on Triangulations and Viro’s Patchworking

Simple e.g. \(f(x) = c_1x + c_2y - c_3xy \)

1. Plot exponent vectors as points and draw convex polytope
2. Label signs at each vertex
3. Draw outer normals from edges with vertices of opposite signs and connect them

Vaishali Miriyagalla (TAMU) Developing a New Tool for Modeling the Topology of Zero Sets of Bivariate Pentanomials July 24, 2023
Background on Triangulations and Viro’s Patchworking

Simple e.g. \(f(x) = c_1x + c_2y - c_3xy \)

1. Plot exponent vectors as points and draw convex polytope
2. Label signs at each vertex
3. Draw outer normals from edges with vertices of opposite signs and connect them

actual zero set
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \(A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \)
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \(\mathcal{A} = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \)

Plot columns as coordinates

Draw convex polytope
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \[A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \]

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

Add \(-\log |c|\) as third row to support \(A\), where \(c = [c_1, c_2, c_3, c_4, c_5]\)

Compute convex hull of lifted support
Determine which triangle faces have positive inner normals
These triangles form triangulation
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \(A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \)

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \(A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \)

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add \(-\log |c|\) as third row to support \(A \), where \(c = [c_1, c_2, c_3, c_4, c_5] \)
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add $-\log |c|$ as third row to support A, where $c = [c_1, c_2, c_3, c_4, c_5]$
- Compute convex hull of lifted support
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. $A = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix}$

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

• Add $-\log |c|$ as third row to support A, where $c = [c_1, c_2, c_3, c_4, c_5]$

• Compute convex hull of lifted support

• Determine which triangle faces have positive inner normals
Program: Isotopy Type (part 1: Triangulations)

Recall e.g. \(\mathcal{A} = \begin{bmatrix} 0 & 1 & 0 & 4 & 1 \\ 0 & 0 & 1 & 1 & 4 \end{bmatrix} \)

Plot columns as coordinates
Draw convex polytope

Triangulating with Five Vertices

- Add \(- \log |c|\) as third row to support \(\mathcal{A} \), where \(c = [c_1, c_2, c_3, c_4, c_5] \)
- Compute convex hull of lifted support
- Determine which triangle faces have positive inner normals
- These triangles form triangulation
Lifted Triangulation Example
Triangulations of $f(x) = c_1 + c_2 x + c_3 y + c_4 x^4 y + c_5 x y^4$
Label signs of vertices, note edges with vertices of opposite signs
- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles
Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles
Label signs of vertices, note edges with vertices of opposite signs

- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Recall Actual Zero Sets
Program: Isotopy Type (part 2: Viro Patchworking)

Label signs of vertices, note edges with vertices of opposite signs
- Outer edges: draw outer normals
- Inner edges: connect to through adjacent triangles

Recall Actual Zero Sets
Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.
Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.

- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality

 ▶ curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)
Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.

- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality
 - curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)

- Problem: This approximation fails if the signed contour has a cusp.
Which side of the signed contour are my coefficients in?

- Plotting the point with the signed contour is visually trivial, but parametrization prevents us from using inequalities to determine the sidedness.

- Ellen Chlachidze (2022) developed a more efficient approximation involving a simpler inequality

 - curve based on the directions of the signed contour as it extends to infinity (let these infinite directions be called rays)

- Problem: This approximation fails if the signed contour has a cusp.
\[A = \begin{bmatrix} 0 & 1 & 2 & 1 & 4 \\ 0 & 2 & 1 & 4 & 1 \end{bmatrix} \]
\[A = \begin{bmatrix} 0 & 1 & 2 & 1 & 4 \\ 0 & 2 & 1 & 4 & 1 \end{bmatrix} \]
Ideas for Approximating Signed Contours with 1 Cusp

1. Use two of Ellen’s approximations: ray 1 to cusp, cusp to ray 2

2. Map a simpler A-discriminant that contains a cusp onto our cusp:

 ▶ A-discriminant of cubic (Support = [0, 1, 2, 3]) has a cusp
 ▶ Solving for sidedness of the cubic A-discriminant (not parametrization) is better
Ideas for Approximating Signed Contours with 1 Cusp

1. Use two of Ellen’s approximations: ray 1 to cusp, cusp to ray 2
Ideas for Approximating Signed Contours with 1 Cusp

1. Use two of Ellen’s approximations: ray 1 to cusp, cusp to ray 2

2. Map a simpler A-discriminant that contains a cusp onto our cusp:
Ideas for Approximating Signed Contours with 1 Cusp

1. Use two of Ellen’s approximations: ray 1 to cusp, cusp to ray 2

2. Map a simpler \mathcal{A}-discriminant that contains a cusp onto our cusp:
 - \mathcal{A}-discriminant of cubic (Support = $[0, 1, 2, 3]$) has a cusp
 - Solving for sidedness of the cubic \mathcal{A}-discriminant (not parametrization) is better
Results: Approximating Signed Contours with Cusps

Ellen's Approximations

\[\mathcal{A} = \begin{bmatrix} 0 & 1 & 2 & 1 & 4 & 1 \\ 0 & 2 & 1 & 4 & 1 \end{bmatrix} \]
Results: Approximating Signed Contours with Cusps

Ellen’s Approximations

\[A = \begin{bmatrix} 0 & 1 & 2 & 1 & 4 & 1 \\ 0 & 2 & 1 & 4 & 1 \end{bmatrix} \]

Two of Ellen’s Approximations
Results: Approximating Signed Contours with Cusps

Ellen’s Approximations

\[A = \begin{bmatrix} 0 & 1 & 2 & 1 & 4 & 4 \\ 0 & 2 & 1 & 4 & 1 \end{bmatrix} \]

Two of Ellen’s Approximations

Mapping Cubic Cusp
Thank you!