Homework 4

Math 302 (section 501), Fall 2016

This homework is due on Thursday, September 22.
0. (This problem is not to be turned in.)
(a) Read Section 3.2.
(b) (Practice Problems) Section $3.2 \# 2,3,14,25,26,30,36,45,46$

1. Read Timo De Wolff's How to Present Homework Solutions, available here:
http://www.math.tamu.edu/~dewolff/Spring16/How_to_do_a_Homework.pdf
What did you find interesting, surprising, or useful?
2. Show that the following statements hold (i.e., give witnesses and show the required inequality).
(a) $f(x)=x^{2}+14 x+5$ is $O\left(x^{2}\right)$.
(b) $f(x)=x^{2}-15$ is $\Omega(x)$.
(c) $f(x)=2 x \cdot \log (x)$ is $O\left(x^{2}\right)$ (you may use that $\log (x)<x$ for every $x>0$).
(d) $f(x)=x^{3}+5 x^{2}-5 x$ is $\Theta\left(x^{3}\right)$.
3. Let $f_{k}(n): \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be the function given by $n \mapsto 1^{k}+2^{k}+\cdots+n^{k}$ for some given positive integer $k>1$. Show that $f_{k}(n)$ is $O\left(n^{k+1}\right)$.
4. Let f and g be functions (from \mathbb{R}, \mathbb{Q}, or \mathbb{Z} to \mathbb{R}, \mathbb{Q}, or \mathbb{Z}). Show: If $f(x)$ is $O(g(x))$, then $g(x)$ is $\Omega(f(x))$.
5. (Bonus problem - optional!) Let $g_{r}(n): \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be the function, which is for every positive integer $r>1$ given by

$$
\begin{aligned}
g_{r}(n) & =1+1^{2}+\cdots+1^{r} \\
& +2+2^{2}+\cdots+2^{r} \\
& \vdots \\
& +n+n^{2}+\cdots+n^{r}
\end{aligned}
$$

Show that $g_{r}(n)$ is $O\left(n^{r+1}\right)$.

Hint: Let for every $k>1 f_{k}(x)$ be defined as in Exercise 3. Express $g_{r}(x)$ as sum of $f_{k}(x)$ for suitable k.
6. Section 3.2. \# 8, 17, 19, 37

