Homework 4

Math 302 (section 501), Fall 2016

This homework is due on Thursday, September 22.

- 0. (This problem is not to be turned in.)
 - (a) Read Section 3.2.
 - (b) (Practice Problems) Section 3.2 # 2, 3, 14, 25, 26, 30, 36, 45, 46
- Read Timo De Wolff's How to Present Homework Solutions, available here: http://www.math.tamu.edu/~dewolff/Spring16/How_to_do_a_Homework.pdf What did you find interesting, surprising, or useful?
- 2. Show that the following statements hold (i.e., give witnesses and show the required inequality).
 - (a) $f(x) = x^2 + 14x + 5$ is $O(x^2)$.
 - (b) $f(x) = x^2 15$ is $\Omega(x)$.
 - (c) $f(x) = 2x \cdot \log(x)$ is $O(x^2)$ (you may use that $\log(x) < x$ for every x > 0).
 - (d) $f(x) = x^3 + 5x^2 5x$ is $\Theta(x^3)$.
- 3. Let $f_k(n) : \mathbb{Z}^+ \to \mathbb{Z}^+$ be the function given by $n \mapsto 1^k + 2^k + \cdots + n^k$ for some given positive integer k > 1. Show that $f_k(n)$ is $O(n^{k+1})$.
- 4. Let f and g be functions (from \mathbb{R} , \mathbb{Q} , or \mathbb{Z} to \mathbb{R} , \mathbb{Q} , or \mathbb{Z}). Show: If f(x) is O(g(x)), then g(x) is $\Omega(f(x))$.
- 5. (Bonus problem optional!) Let $g_r(n) : \mathbb{Z}^+ \to \mathbb{Z}^+$ be the function, which is for every positive integer r > 1 given by

$$g_r(n) = 1 + 1^2 + \dots + 1^r + 2 + 2^2 + \dots + 2^r \vdots \vdots + n + n^2 + \dots + n^r.$$

Show that $g_r(n)$ is $O(n^{r+1})$.

Hint: Let for every k > 1 $f_k(x)$ be defined as in Exercise 3. Express $g_r(x)$ as sum of $f_k(x)$ for suitable k.

6. Section 3.2. # 8, 17, 19, 37