Homework 8

Math 302 (section 501), Fall 2016
This homework is due on Thursday, October 20.
0. (This problem is not to be turned in.)
(a) Read Sections 1.8 and 2.4.
(b) Use quantifiers to define one-to-one and onto. Negate both.
(c) What types of theorems require a uniqueness proof (pg. 99)? What are the parts of such a proof? Prove that there is a unique real number x for which $x^{2}+6 x+9=0$.
(d) (Practice Problems) Section $1.8 \# 2,3,8,13,17,39,34$
(e) (Practice Problems) Section $2.4 \# 4,10,12,18,26,32,34,40$

1. Consider the following function:

$$
\begin{array}{rll}
f: \quad \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} & \rightarrow & \{n \in \mathbb{Z} \mid n \geq 0\} \\
(a, b, c) & \mapsto & a^{2}+b^{2}+c^{2}
\end{array}
$$

(a) Prove or disprove: f is one-to-one.
(b) Prove or disprove: f is onto.
2. Prove or disprove the following claims:
(a) If x and y are real numbers, then

$$
\max (x, y)=\frac{x+y+|x-y|}{2}
$$

(b) If x is a nonnegative real number, then $x^{2}-3 x+2 \geq 0$.
3. Prove the following claims:
(a) If x and y are real numbers, then $|x|-|y| \leq|x-y|$.
(b) If w and z and real numbers with $0<w<z$, then

$$
w<\sqrt{w z}<\frac{1}{2}(w+z)<z
$$

4. Let $S:=\{1,2,4,7\}$. Compute the following sums (also write down the summands):

$$
\sum_{j=0}^{4}(-2)^{j}, \quad \sum_{j \in S} j \cdot(j-1), \quad \sum_{i=0}^{2} \sum_{j=0}^{3}(3 i+2 j), \quad \sum_{i=0}^{2} \sum_{j=0}^{3} i j
$$

5. Prove that for every $n \in \mathbb{Z}^{+}$and every $a_{1}, \ldots, a_{n} \in \mathbb{R}$ it holds that $\sum_{j=1}^{n}\left(a_{j}-a_{j-1}\right)=$ $a_{n}-a_{0}$. Do not use an argument involving "...". Instead, give a direct argument exploiting how often particular terms appear and which sign they have.
6. Section 1.8 \# 9, 14
7. Section $2.4 \# 2,6,14,16$
