Homework 13

Math 415 (section 502), Fall 2015

This homework is due on TUESDAY, December 1. You may cite results from class or previous homeworks/exams.
0. (This problem is not to be turned in.)
(a) Read Section 20.
(b) Section $20 \# 7,24$

1. True/false (No proofs necessary for this problem.)
(a) \mathbb{Z}_{50} is an integral domain.
(b) 0 is a zero divisor in every ring.
(c) If a ring R has a zero divisor, then R is not a field.
(d) The polynomial ring $\mathbb{Q}[x]$ is a field.
(e) $\mathbb{Z}_{30}[x]$ is an integral domain.
(f) The set of continuous functions $\mathbb{R} \rightarrow \mathbb{R}$ is a commutative ring with unity $1 \neq 0$.
(g) The set of constant functions $\mathbb{R} \rightarrow \mathbb{R}$ forms a subring of the ring of functions $\mathbb{R} \rightarrow \mathbb{R}$.
2. Prove that if $\phi: R \rightarrow R^{\prime}$ is a ring homomorphism, both rings R and R^{\prime} have unity, and $\phi(1)$ is a unit, then $\phi(1)=1$.
3. (a) Is \mathbb{Z}_{12}^{*} (the group of units of \mathbb{Z}_{12}) cyclic? No proof necessary, but show your work. (You might look ahead and do $\# 5 \mathrm{~b}$ at this time.)
(b) Prove that if $\varphi(n)$ is a prime number, then \mathbb{Z}_{n}^{*} is cyclic. (Here, φ is the Euler phi-function.)
(c) Is the converse of (b) true? Explain.
4. Let p and q be distinct prime numbers.
(a) How many units does $\mathbb{Z}_{p^{2}}$ have? How many zero divisors? Give a proof.
(b) How many units does $\mathbb{Z}_{p q}$ have? How many zero divisors? Give a proof.
5. (a) Prove that for $x \in \mathbb{Z}_{n}$, if $x^{2}=1$ (in \mathbb{Z}_{n}), then x is a unit.
(b) Find all $x \in \mathbb{Z}_{12}$ for which $x^{2}=1$. (No proof necesary, but show your work.)
(c) Find all $x \in \mathbb{Z}_{5}$ for which $x^{2}=1$. (No proof necesary, but show your work.)
(d) Prove that if p is a prime number, then 1 and $p-1$ both are solutions to the equation $x^{2}=1$ in \mathbb{Z}_{p}, and there are no other solutions.
6. Recall that a nonzero element a in a ring R is a zero divisor if there exists a nonzero element b in R such that $a b=0$ or $b a=0$. The following problem shows that there is a distinction between left zero divisors, right zero divisors, and zero divisors.
(a) Consider the set of infinite-dimensional matrices with entries in \mathbb{R} for which each column and each row has only finitely many nonzero entries. Show that this set, which will be denoted by \mathcal{M}, is a ring under matrix addition and multiplication. What is the zero element of the ring? Does it have a unity element?
(b) Define the following 'left shift' matrix, which has 1's above the diagonal and 0's for all other entries:

$$
L:=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & \ddots & \\
\vdots & & & &
\end{array}\right)
$$

Define the following 'truncation' matrix, which has a 1 in the top left entry and all other entries are 0 :

$$
T:=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & & &
\end{array}\right)
$$

Show that the matrix product $L T$ is zero (so L is a left zero divisor in \mathcal{M}), but L is not a right zero divisor.
(c) Define a 'right shift' matrix R, and show that it is a right zero divisor, but not a left zero divisor.
7. Prove that if a matrix $A \in M_{n}(\mathbb{Q})$ is a left zero divisor (in $M_{n}(\mathbb{Q})$), then A is also a right zero divisor. (You may use facts from your Linear Algebra class for this problem.)
8. Section $20 \# 6,10,18$

