Homework 14

Math 415 (section 502), Fall 2015

This homework is due on Thursday, December 3. You may cite results from class or previous homeworks/exams.

- 0. (This problem is not to be turned in.) Read Section 21.
- 1. True/false (No proofs necessary for this problem.)
 - (a) If D and D' are isomorphic integral domains, then their fields of quotients are isomorphic.
 - (b) If p is a prime number, then \mathbb{Z}_p is its own field of quotients.
 - (c) If n is an integer that is not a prime number, then the field of quotients of \mathbb{Z}_n is not defined.
 - (d) The following is a field of fractions for $\mathbb{Q}[x]$:

$$\mathbb{Q}(x) := \left\{ \frac{p}{q} \mid p, q \in \mathbb{Q}[x], \text{and } q \neq 0 \right\}$$

(this field is called the *field of rational functions* with coefficients in \mathbb{Q}).

- (e) $\mathbb{Q}(x)$ is a field of fractions for $\mathbb{Z}[x]$.
- (f) $\mathbb{Z}_6 \times \mathbb{Z}_{10} \cong \mathbb{Z}_4 \times \mathbb{Z}_{15}$
- 2. A zero or root of a polynomial f is an element α for which $f(\alpha) = 0$. Find all zeroes of $x^{199} + x^{73} + x^{60} + x^6$ in \mathbb{Z}_5 .
- 3. (a) Show (by counterexample) that the polynomial ring $\mathbb{Z}_{25}[x]$ is *not* an integral domain.
 - (b) Prove that if D is an integral domain, then D[x] is an integral domain.
- 4. (a) Prove that $D := \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring of the field \mathbb{C} . Is D an integral domain? Is it a field? Explain.
 - (b) Explain why there exists a subfield of \mathbb{C} that is a field of fractions of D.
 - (c) Describe (as a subfield of \mathbb{C}) this field of fractions of D from part (b).
- 5. Does there exist a subfield of \mathbb{Q} that is a field of fractions of the ring $\mathbb{Z}[x]$? If not, then give a proof. If so, explain, and describe this subfield.
- 6. (a) Section 21 #12
 - (b) Use (a) to explain why the partial ring of quotients $Q(2\mathbb{Z}, 2\mathbb{Z} \setminus \{0\})$ is defined.
 - (c) Does there exist a subfield of \mathbb{Q} that is isomorphic to $Q(2\mathbb{Z}, 2\mathbb{Z} \setminus \{0\})$? If not, then give a proof. If so, explain, and describe this subring. Is it a field?
- 7. Section 21 #2, 4, 11
- 8. (Challenge not to be turned in) Section 21 #5, 13–16