Homework 14

Math 415 (section 502), Fall 2015
This homework is due on Thursday, December 3. You may cite results from class or previous homeworks/exams.
0. (This problem is not to be turned in.) Read Section 21.

1. True/false (No proofs necessary for this problem.)
(a) If D and D^{\prime} are isomorphic integral domains, then their fields of quotients are isomorphic.
(b) If p is a prime number, then \mathbb{Z}_{p} is its own field of quotients.
(c) If n is an integer that is not a prime number, then the field of quotients of \mathbb{Z}_{n} is not defined.
(d) The following is a field of fractions for $\mathbb{Q}[x]$:

$$
\mathbb{Q}(x):=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Q}[x], \text { and } q \neq 0\right\}
$$

(this field is called the field of rational functions with coefficients in \mathbb{Q}).
(e) $\mathbb{Q}(x)$ is a field of fractions for $\mathbb{Z}[x]$.
(f) $\mathbb{Z}_{6} \times \mathbb{Z}_{10} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{15}$
2. A zero or root of a polynomial f is an element α for which $f(\alpha)=0$. Find all zeroes of $x^{199}+x^{73}+x^{60}+x^{6}$ in \mathbb{Z}_{5}.
3. (a) Show (by counterexample) that the polynomial ring $\mathbb{Z}_{25}[x]$ is not an integral domain.
(b) Prove that if D is an integral domain, then $D[x]$ is an integral domain.
4. (a) Prove that $D:=\{a+b i \mid a, b \in \mathbb{Z}\}$ is a subring of the field \mathbb{C}. Is D an integral domain? Is it a field? Explain.
(b) Explain why there exists a subfield of \mathbb{C} that is a field of fractions of D.
(c) Describe (as a subfield of \mathbb{C}) this field of fractions of D from part (b).
5. Does there exist a subfield of \mathbb{Q} that is a field of fractions of the ring $\mathbb{Z}[x]$? If not, then give a proof. If so, explain, and describe this subfield.
6. (a) Section $21 \# 12$
(b) Use (a) to explain why the partial ring of quotients $Q(2 \mathbb{Z}, 2 \mathbb{Z} \backslash\{0\})$ is defined.
(c) Does there exist a subfield of \mathbb{Q} that is isomorphic to $Q(2 \mathbb{Z}, 2 \mathbb{Z} \backslash\{0\})$? If not, then give a proof. If so, explain, and describe this subring. Is it a field?
7. Section $21 \# 2,4,11$
8. (Challenge - not to be turned in) Section $21 \# 5,13-16$

