Homework 3

Math 415 (section 502), Fall 2015

This homework is due on Thursday, September 17. You may cite results from class, as appropriate. You may also cite facts from Linear Algebra.

- 0. Re-read the "Some words of warning" subsection of Section 2. Read Sections 3–5.
- 1. Prove the following subgroup criterion: A subset H of a group G is a subgroup if and only if H is nonempty and for all $a, b \in H$, $ab^{-1} \in H$.
- 2. Recall that $\operatorname{GL}_n(\mathbb{R})$ is the general linear group, which consists of all invertible $n \times n$ matrices with entries in \mathbb{R} .
 - (a) Which binary operation makes $GL_n(\mathbb{R})$ a group? Which binary operation makes \mathbb{R}^* a group? (No proof necessary.)
 - (b) For $n \ge 2$, is $\operatorname{GL}_n(\mathbb{R})$ abelian? Give a proof.
 - (c) Let $SL_n(\mathbb{R})$ be the set of all $n \times n$ matrices with entries in \mathbb{R} and determinant 1. Is $SL_n(\mathbb{R})$ a subgroup of $GL_n(\mathbb{R})$? Give a proof.
 - (d) Is the set of all $n \times n$ matrices with entries in \mathbb{R} and determinant *not* equal to 1 a subgroup of $\operatorname{GL}_n(\mathbb{R})$? Give a proof.
 - (e) Let n be a positive number with $n \ge 2$. Is the following function ϕ a group homomorphism? Is it an isomorphism? Give a proof. (The group operations are the ones from part (a).)

$$\phi : \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R}^*$$
$$A \mapsto \det A$$

- 3. For a positive integer n, define \star_n on \mathbb{Z}_n to be multiplication modulo n. Prove that if n = 10, the set $\{1, 3, 7, 9\}$ is a group with binary operation \star_n . (Do not forget to check that \star_n is an associative binary operation.) Write the group table.
- 4. Are $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ isomorphic groups? Give a proof. (*Hint*: Prove that any homomorphism $\phi : \mathbb{Z} \to \mathbb{Q}$ is not onto by consider $\frac{1}{2}\phi(1)$.)
- 5. Section 4 # 6, 20, 25, 28, 32
- 6. Section 5 # 14, 18