## Homework 7

Math 415 (section 502), Fall 2015

This homework is due on Thursday, October 15. You may cite results from class or previous homeworks, as appropriate. Recall that the kernel of a homomorphism $\phi: G \rightarrow G^{\prime}$ is $\operatorname{ker}(\phi):=\phi^{-1}\left[\left\{e_{G^{\prime}}\right\}\right]$.
0. (This problem is not to be turned in.)
(a) Read Section 11.
(b) Section 11 \# 10, 11, 13, 16, 18
(c) Does $S_{7}$ have any cyclic subgroups of order 9 ?
(d) What is the smallest $n$ for which $S_{n}$ contains a permutation of order 10? What about order 9 ?

1. (No proofs necessary for this problem.)
(a) List all subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
(b) Let $g=(132) \in S_{3}$, and let $H$ be the subgroup generated by (12) in $S_{3}$. Compute $g H$ and $H g$.
2. (a) Is $\mathbb{Z}_{7} \times \mathbb{Z}_{9}$ isomorphic to $\mathbb{Z}_{21} \times \mathbb{Z}_{3}$ ? Explain.
(b) Is $\mathbb{Z}_{6} \times \mathbb{Z}_{5}$ isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{10}$ ? Explain.
3. Prove that if $G$ is a finite group of order $n$, and $g \in G$, then $g^{n}=e$.
4. Prove or disprove: if $\phi: G \rightarrow K$ is a homomorphism, and $\psi: K \rightarrow L$ is a homomorphism, then $\psi \circ \phi$ is a homomorphism.
5. Let $\phi: \mathbb{Z} \rightarrow G$ be a homomorphism.
(a) Prove that if the order of $\phi(1)$ is infinite, then $\operatorname{ker}(\phi)=\{0\}$.
(b) Prove that if the order of $\phi(1)$ is finite, then $\operatorname{ker}(\phi)$ is the cyclic subgroup of $\mathbb{Z}$ generated by the order of $\phi(1)$.
6. (Hint for this problem: the previous problem.)
(a) Let $\phi$ be the (unique) homomorphism $\mathbb{Z} \rightarrow \mathbb{Q}$ for which $\phi(1)=-8.6$. Compute the kernel of $\phi$.
(b) Let $\phi$ be the (unique) homomorphism $\mathbb{Z} \rightarrow S_{6}$ for which $\phi(-1)=(13)(56)$. Give a formula for $\phi$, and compute the kernel of $\phi$.
7. Section $11 \# 14,24,32$ (not c or d), 36, 52
