Homework 7

Math 415 (section 502), Fall 2015

This homework is due on Thursday, October 15. You may cite results from class or previous homeworks, as appropriate. Recall that the *kernel* of a homomorphism $\phi : G \to G'$ is $\ker(\phi) := \phi^{-1}[\{e_{G'}\}].$

- 0. (This problem is not to be turned in.)
 - (a) Read Section 11.
 - (b) Section 11 # 10, 11, 13, 16, 18
 - (c) Does S_7 have any cyclic subgroups of order 9?
 - (d) What is the smallest n for which S_n contains a permutation of order 10? What about order 9?
- 1. (No proofs necessary for this problem.)
 - (a) List all subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_4$.
 - (b) Let $g = (132) \in S_3$, and let H be the subgroup generated by (12) in S_3 . Compute gH and Hg.
- 2. (a) Is Z₇ × Z₉ isomorphic to Z₂₁ × Z₃? Explain.
 (b) Is Z₆ × Z₅ isomorphic to Z₃ × Z₁₀? Explain.
- 3. Prove that if G is a finite group of order n, and $g \in G$, then $g^n = e$.
- 4. Prove or disprove: if $\phi : G \to K$ is a homomorphism, and $\psi : K \to L$ is a homomorphism, then $\psi \circ \phi$ is a homomorphism.
- 5. Let $\phi : \mathbb{Z} \to G$ be a homomorphism.
 - (a) Prove that if the order of $\phi(1)$ is infinite, then ker $(\phi) = \{0\}$.
 - (b) Prove that if the order of $\phi(1)$ is finite, then ker (ϕ) is the cyclic subgroup of \mathbb{Z} generated by the order of $\phi(1)$.
- 6. (*Hint for this problem*: the previous problem.)
 - (a) Let ϕ be the (unique) homomorphism $\mathbb{Z} \to \mathbb{Q}$ for which $\phi(1) = -8.6$. Compute the kernel of ϕ .
 - (b) Let ϕ be the (unique) homomorphism $\mathbb{Z} \to S_6$ for which $\phi(-1) = (13)(56)$. Give a formula for ϕ , and compute the kernel of ϕ .
- 7. Section 11 # 14, 24, 32 (not c or d), 36, 52