Homework 15 (the last homework ${ }^{1}$)

Math 469 (section 500), Spring 2016

This homework is due on Thursday, April 28.
0. Read (or remind yourself) what Descartes's rule of signs says (page 24 of your textbook, or find it online).

1. Consider the polynomial $f(x)=x^{3}+a x+b$, where $a, b \in \mathbb{R}$.
(a) What is the maximum number of positive roots that f can have? Explain. (A positive root of f is some $x^{*}>0$ for which $f\left(x^{*}\right)=0$).
(b) Give an example of $a, b \in \mathbb{R}$ so that f has fewer positive roots than the maximum number you found in (a). Justify your answer.
(c) Give an example of $a, b \in \mathbb{R}$ so that f has exactly the maximum number of positive roots you found in (a). Justify your answer.
2. Consider the following iron-trafficking model, which may be viewed as a much-simplified version of the Chifman et al. (2012) model we looked at in class:

$$
\begin{aligned}
\frac{d C}{d t} & =k_{1}\left(\frac{1}{1+\left(\frac{C}{T}\right)^{n}}\right)-k_{2} C\left(1-\frac{1}{1+\left(\frac{C}{T}\right)^{n}}\right)-k_{3} C-\alpha C \\
\frac{d F}{d t} & =k_{2} C\left(1-\frac{1}{1+\left(\frac{C}{T}\right)^{n}}\right)-\alpha F
\end{aligned}
$$

where C represents iron in the cytosol and F represents ferritin, and n is a positive integer, $k_{i}>0$ for all $i, \alpha>0, T>0$.
(a) How does the number of steady states $(C, T) \in \mathbb{R}_{>0}^{2}$ depend on the values of n, k_{i}, T, α ?
(b) For each steady state, is it locally stable? Does the stability depend on n, k_{i}, T, α ?
(c) (Optional bonus problem) Is this system globally stable?

[^0]
[^0]: ${ }^{1}$ we will continue to do in-class peer evaluations

