Genome Reconstruction: A Puzzle with a Billion Pieces
 Phillip E. C. Compeau and Pavel A. Pevzner

Outline

I. Problem
II. Two Historical Detours
III.Example
IV.The Mathematics of DNA Sequencing
V.Complications

Problem

Problem: Given DNA, how do we find the nucleotide sequence?

- Reduces to two problems:

1. Read generation (Biological)
2. Fragment Assembly (Algorithmic/Mathematical)

Introduction to DNA Sequencing

- Four Nucleotides: A, G, C, T
- No known way to read DNA one nucleotide at a time
- Current technology can only 'read' short segments of DNA
- At most approximately 100 nucleotides in length
- Short fragments of length k are called k-mers
- Biologists generate these k-mers starting at every nucleotide
- Then use mathematics to attempt to recover the sequence by solving a giant overlap puzzle

Brief Introduction to Read Generation

- First synthesize all possible 3-mers
- Attach these to a grid on which each I-mer is assigned a unique location
- Take the DNA fragment and fluorescently label it
- Apply this to the DNA array
- Read the complements of fluorescent grids

AAA	AGA	CAA	CGA	GAA	GGA	TAA	TGA
AAC	AGC	CAC	CGC	GAC	GGC	TAC	TGC
AAG	AGG	CAG	CGG	GAG	GGG	TAG	TGG
AAT	AGT	CAT	CGT	GAT	GGT	TAT	TGT
ACA	ATA	CCA	CTA	GCA	GTA	TCA	TTA
ACC	ATC	CCC	CTC	GCC	GTC	TCC	TTC
ACG	ATG	CCG	CTG	GCG	GTG	TCG	TTG
ACT	ATT	CCT	CTT	GCT	GTT	TCT	TTT

Welcome to Konigsberg

a

b

a) Map of Konigsberg. b) The graph formed by compressing each land mass into a vertex and representing each bridge by an edge.

Compeau, Phillip E C, Pavel A. Pevzner, and Glenn Tesler. "How to Apply De Bruijn Graphs to Genome Assembly." Nat Biotechnol Nature Biotechnology 29.11 (2011): 987-91. Web.

Konigsberg Bridge Problem

- Problem: Is there a walk that traverses each bridge exactly once?
- Euler solved this problem in the 18th century and spawned the branch of mathematics known as Graph Theory.

Hamilton's Game

From Euler and Hamilton to Genome Assembly

Simplifying assumptions:
1.The genome we are reconstructing is cyclic.
2.Every read has the same length.
3.All possible substrings of length / occurring in our genome have been generated as reads
4.The reads have been generated without any errors.

Example

- Suppose we have the sequence:

TAATGCCATGGGATGTT

- From this sequence, we yield the 3-mers:

TAA, AAT, ATG, TGC, GCC, CCA, CAT, ATG,TGG, GGG,GGA,GAT, ATG,TGT,GTT

- We construct a graph from these 3-mers by:

1. Using the 3-mers as vertices.
2. Placing a directed edge from vertex 1, (v1), to vertex 2, (v2) if the prefix of v 2 is the suffix of v 1 .

Example

- Prefix of AAT is AA while suffix of TAA is $A A$, etc.

Example

- In practice, k-mers are given in lexicographic order:

AAT, ATG, ATG, ATG, CAT, CCA, GAT, GCC, GGA, GGG, GTT, TAA, TGC, TGG, TGT

- We again use the 3-mers as nodes
- Now we connect two nodes from one to another if the suffix is same as prefix
- For example, we connect AAT to all ATG nodes
- We yield a new graph that looks as follows.
- The goal is now to find a path in the graph that passes through every node exactly once. (Hamiltonian Problem)

Example

Building the Path

Sequence then becomes:
TAATGCCATGGGATGTT

Example Revisited

We now approach sequence generation in a new way.

- Start again with the sequence:

TAATGCCATGGGATGTT

- Generate 3-mers again:

TAA, AAT, ATG, TGC, GCC, CCA, CAT, ATG,TGG, GGG,GGA,GAT, ATG,TGT,GTT

- The 3-mers now become the edges while the prefixes and suffixes become the nodes.

Example Revisited

- TA is the prefix of a 3-mer with AA as the suffix, so it is connected by an edge labeled by the 3-mer TAT, etc
- The next step is to paste together nodes that are the same.

Eulerian Problem

- The goal now is to find a path through the graph that passes through every edge exactly once. (Eulerian Problem)
- When this path is found, concatenate the edges to retrieve the sequence.

When we read the edges back, we recover the sequence:
TAATGCCATGGGATGTT

The Million Dollar Question

Is the Hamiltonian Problem or the Eulerian Problem easier to solve?

Million Dollar Question

- Turns out that the Hamiltonian Problem is intractable
- NP-complete
- You can literally win a million dollars by solving it
- Hamiltonian strategy still used to sequence the Human Genome and others before 2001
- Eulerian Problem is very easy to solve
- Proof of Euler's Theorem gives you a very nice algorithm to find the cycle

Euler's Theorem

Theorem: A directed, connected, and finite graph G has an Eulerian cycle if and only if, for every vertex v in G, the indegree and the outdegree of v are equal.

Proof

Complications

- Eulerian Cycle found might not be unique
- In our example there is also a cycle that generates the sequence:
TAATGGGATGCCATGTT
- How does the problem change when the sequence is not cyclic, but rather, a linear DNA sequence?
- How do we adjust for errors in the read generation?

Thank You for Listening. Any Questions?

