Homework 12

Math 653, Fall 2019

This homework is due on Thursday, November 14.

1. Read Hungerford, Section 3.1.
(a) What is a group ring (page 117)?
(b) What does the binomial theorem (page 118) allow us to compute?
(c) Section $3.1 \# 3,6,15$
(d) (These problems are not to be turned in.) Section $3.1 \# 1,2,11,14,18$
2. The center of a ring R is $C(R):=\{z \in R \mid z r=r z$ for all $r \in R\}$.
(a) Is the center of a ring always a subring of the ring? (Prove your answer.)
(b) Is the center of a ring always an ideal of the ring? (Prove your answer.)
3. An element r in a ring is nilpotent if $r^{n}=0$ for some positive integer n.
(a) Prove that if R is a commutative ring and $r, s \in R$ are both nilpotent, then $r+s$ also is nilpotent.
(b) Is (a) still true if R is non-commutative? Prove your answer.
(c) Assume R is commutative. Does the set of nilpotent elements form an ideal of R ? Prove your answer.
4. Let \mathbb{F} be a field.
(a) Let V be a vector space over \mathbb{F}. Let $\operatorname{End}_{\mathbb{F}}(V)$ denote the set of linear transformations from V to V. Prove that $\operatorname{End}_{\mathbb{F}}(V)$ is a ring under addition (of functions) and composition.
(b) Assume that, additionally, V is finite-dimensional over \mathbb{F}; let n denote the dimension. Prove the following isomorphism of rings: $\operatorname{End}_{\mathbb{F}}(V) \cong M_{n}(\mathbb{F})$.
5. Let $R=\mathbb{Z}_{2}[x]$ and I be the ideal of R generated by $x^{2}+x+\overline{1}$.
(a) Show how to identify R / I with the set $\{0,1, x, x+1\}$. (Explain.)
(b) Compute the addition and multiplitation tables for R / I. Is R / I a field? Explain.
