Homework 12

Math 653, Fall 2019

This homework is due on Thursday, November 14.

- 1. Read Hungerford, Section 3.1.
 - (a) What is a group ring (page 117)?
 - (b) What does the *binomial theorem* (page 118) allow us to compute?
 - (c) Section 3.1 # 3, 6, 15
 - (d) (These problems are not to be turned in.) Section 3.1 # 1, 2, 11, 14, 18
- 2. The center of a ring R is $C(R) := \{z \in R \mid zr = rz \text{ for all } r \in R\}.$
 - (a) Is the center of a ring always a *subring* of the ring? (Prove your answer.)
 - (b) Is the center of a ring always an *ideal* of the ring? (Prove your answer.)
- 3. An element r in a ring is *nilpotent* if $r^n = 0$ for some positive integer n.
 - (a) Prove that if R is a commutative ring and $r, s \in R$ are both nilpotent, then r + s also is nilpotent.
 - (b) Is (a) still true if R is non-commutative? Prove your answer.
 - (c) Assume R is commutative. Does the set of nilpotent elements form an *ideal* of R? Prove your answer.
- 4. Let \mathbb{F} be a field.
 - (a) Let V be a vector space over \mathbb{F} . Let $\operatorname{End}_{\mathbb{F}}(V)$ denote the set of linear transformations from V to V. Prove that $\operatorname{End}_{\mathbb{F}}(V)$ is a ring under addition (of functions) and composition.
 - (b) Assume that, additionally, V is finite-dimensional over \mathbb{F} ; let n denote the dimension. Prove the following isomorphism of rings: $\operatorname{End}_{\mathbb{F}}(V) \cong M_n(\mathbb{F})$.
- 5. Let $R = \mathbb{Z}_2[x]$ and I be the ideal of R generated by $x^2 + x + \overline{1}$.
 - (a) Show how to identify R/I with the set $\{0, 1, x, x+1\}$. (Explain.)
 - (b) Compute the addition and multiplication tables for R/I. Is R/I a field? Explain.