Homework 15

Math 653, Fall 2019

This homework is due on TUESDAY, December 3.

1. Read Hungerford, Section 3.6
(a) Section $3.5 \# 7$
(b) Section $3.6 \# 10$
(c) (These problems are not to be turned in.) Section $3.5 \# 2(a), 9$
(d) (These problems are not to be turned in.) Section $3.6 \# 5,7$; prove Theorem 6.1 on page 158
(e) (These problems are not to be turned in.) Let R be a commutative ring. Let I be an ideal of R, and let (I) be the ideal of $R[x]$ generated by I. Prove or disprove: $R[x] /(I) \cong(R / I)[x]$. Also, if I is a prime ideal of R, does it follow that (I) is a prime ideal of $R[x]$?
2. Let R be a commutative ring, with prime ideal P. Let $S=R \backslash P$.
(a) Prove that S is a multiplicative set.
(b) Prove that $S^{-1} R$ has a unique maximal ideal. (Definition/Notation: $S^{-1} R$ is the localization of R at P, denoted by R_{P}. In general, a local ring is a commutative ring with a unique maximal ideal.)
3. Consider the polynomial $f=x^{5}+10 x^{4}+25 x-c$. For which $c \in \mathbb{Z}$ does Eisenstein's criterion imply that f is irreducible in $\mathbb{Q}[x]$? For those c, is f also irreducible in $\mathbb{Z}[x]$? Explain.
