Homework 15

Math 653, Fall 2019

This homework is due on TUESDAY, December 3.

- 1. Read Hungerford, Section 3.6
 - (a) Section 3.5 #7
 - (b) Section 3.6 #10
 - (c) (These problems are not to be turned in.) Section 3.5 # 2(a), 9
 - (d) (These problems are not to be turned in.) Section 3.6 #5, 7; prove Theorem 6.1 on page 158
 - (e) (These problems are not to be turned in.) Let R be a commutative ring. Let I be an ideal of R, and let (I) be the ideal of R[x] generated by I. Prove or disprove: $R[x]/(I) \cong (R/I)[x]$. Also, if I is a prime ideal of R, does it follow that (I) is a prime ideal of R[x]?
- 2. Let R be a commutative ring, with prime ideal P. Let $S = R \setminus P$.
 - (a) Prove that S is a multiplicative set.
 - (b) Prove that $S^{-1}R$ has a unique maximal ideal. (Definition/Notation: $S^{-1}R$ is the *localization* of R at P, denoted by R_P . In general, a *local ring* is a commutative ring with a unique maximal ideal.)
- 3. Consider the polynomial $f = x^5 + 10x^4 + 25x c$. For which $c \in \mathbb{Z}$ does Eisenstein's criterion imply that f is irreducible in $\mathbb{Q}[x]$? For those c, is f also irreducible in $\mathbb{Z}[x]$? Explain.