Homework 2

Math 653, Fall 2019

This homework is due on Thursday, September 5. You may cite results from class or previous homework, as appropriate.

- 1. Read the Hungerford, sections 1.1–1.4.
 - (a) Section 1.1, # 7
 - (b) Section 1.2, # 2, 5, 8
 - (c) Section 1.3 # 1, 3
 - (d) Section 1.4, # 4
- 2. Prove or disprove: The following **Borel group** is a subgroup of $GL_n(\mathbb{R})$:

$$B_2(\mathbb{R}) := \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R}, ac \neq 0 \right\} .$$

- 3. Let $f: G \to H$ be a group homomorphism. Prove or disprove the following:
 - (a) If f is surjective, then |f(g)| = |g| for all $g \in G$.
 - (b) If f is injective, then |f(g)| = |g| for all $g \in G$.

4. Let
$$f : \mathbb{C}^* \to \operatorname{GL}_2(\mathbb{R})$$
 be defined by $f(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ for all $a, b \in \mathbb{R}$.

- (a) Is f a group homomorphism? Prove your answer.
- (b) Is f injective? Surjective? Prove your answers.
- (c) Prove that $f^{-1}(SL_2(\mathbb{R})) = S^1$, where S^1 denotes the unit circle in the complex plane.
- 5. Redefine a group homomorphism via a commutative diagram.
- 6. (a) Is \mathbb{Z} a normal subgroup of \mathbb{Q} ? Explain.
 - (b) Is \mathbb{Q}/\mathbb{Z} abelian? Infinite? Explain.
- 7. A subgroup H of a group G is maximal if $H \subsetneq G$ and there is no subgroup K of G such that $H \subsetneq K \subsetneq G$.
 - (a) Which subgroups of \mathbb{Z} are maximal? Explain.
 - (b) Does \mathbb{Q} have maximal subgroups? Prove your answer.
 - (c) Are \mathbb{Z} and \mathbb{Q} isomorphic groups? Prove your answer.

- 8. Let *H* be a subgroup of a group *G*, and let $a, b \in G$. Consider the following claims: (1) aH = bH, (2) $a \in bH$, (3) $ab^{-1} \in H$, and (4) $ba^{-1} \in H$.
 - (a) State all implications among the four claims.
 - (b) Prove the implications in your answer to (a).
 - (c) Prove that all remaining implications (if any) are false.
- 9. Let *H* be a subgroup of a group *G*, and let $g \in G$. Consider the following claims: (1) gH = Hg, (2) $gHg^{-1} = H$, (3) $gHg^{-1} \subseteq H$, and (4) $gHg^{-1} \supseteq H$.
 - (a) State all implications among the four claims.
 - (b) Prove the implications in your answer to (a).
 - (c) Prove that all remaining implications (if any) are false.
 - (d) How would your answers change if G is finite?
- 10. (a) Prove that a homomorphism $\phi : \langle a \rangle \to G$ from a cyclic group generated by a to a group G is uniquely determined by $\phi(a)$. (*Hint*: What is $\phi(a^n)$?)
 - (b) List all homomorphisms $\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$. (No proof necessary.)
 - (c) Let G be a group. Does the set of homomorphisms $\mathbb{Z} \to G$ have the same cardinality as G? Explain.
- 11. (a) Let G be a group. Prove or disprove: a function $\phi : \mathbb{Z}/n\mathbb{Z} \to G$ is a homomorphism if and only if $\phi(m) = \phi(1)^m$ and the order of $\phi(1)$ (in G) divides n.
 - (b) List all homomorphisms $\mathbb{Z}/5\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z}$. (No proof necessary.)
 - (c) List all homomorphisms $\mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$. (No proof necessary.)
 - (d) List all homomorphisms $\mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$. (No proof necessary.)
- 12. Complete the group tables below.

GROUP TABLES

	$ ho_0$	ρ_1	ρ_2	μ_1	μ_2	μ_3
identity= ρ_0						
ρ_1						
$ ho_2$						
μ_1						
μ_2						
μ_3						

Table 1: $S_3 \cong D_3$, where ρ_i 's denote rotations and μ_i 's denote flips

	$ ho_0$	ρ_1	ρ_2	$ ho_3$	μ_1	$\mid \mu_2$	δ_1	δ_2
identity= ρ_0								
$ ho_1$								
$ ho_2$								
$ ho_3$								
μ_1								
μ_2								
δ_1								
δ_2								

Table 2: D_4

	1	ho	ρ^2	$ ho^3$	$ ho^4$	s	s ho	$s \rho^2$	$s \rho^3$	$s \rho^4$
identity = 1										
ρ										
ρ^2										
ρ^3										
$ ho^4$										
s										
s ho										
$s\rho^2$										
$\frac{\frac{s\rho^2}{s\rho^3}}{\frac{s\rho^4}{}}$										
$s ho^4$										

Table 3: $D_5 = \langle \rho, s \mid \rho^5 = s^2 = 1, \ \rho s = s \rho^{-1} \rangle$