Homework 3

Math 653, Fall 2019

This homework is due on Thursday, September 12.

- 1. Read Hungerford, section 1.5.
 - (a) Prove or disprove: For subgroups H and K of a group G, the set HK is a subgroup of G if and only if HK = KH.
 - (b) Prove Proposition 4.9 (on page 40).
 - (c) Section 1.4 # 5, 8
 - (d) Section 1.5 # 1, 16
- 2. Let p be a prime number. Use Lagrange's theorem to prove that (up to isomorphism) there is only one group of order p, and that in any such group every non-identity element generates the group.
- 3. Are \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$ isomorphic groups? Prove your answer.
- 4. Prove or disprove: Let H be a subgroup of a group G. Let \mathcal{L} (respectively, \mathcal{R}) denote the set of left (respectively, right) cosets of H in G. Then the function $\mathcal{L} \to \mathcal{R}$ given by $gH \mapsto Hg$ is well defined.
- 5. Let G be a group, and let $g \in G$. Consider the function $\phi : G \to G$ given by $\phi(x) = gxg^{-1}$.
 - (a) Prove that ϕ is a homomorphism.
 - (b) Determine the kernel of ϕ .
 - (c) Is ϕ an automorphism? Give a proof. (Recall that an *automorphism* of a group K is an isomorphism from K to K.)
- 6. Let G be a group. Define, for $g \in G$, the function $i_g : G \to G$ given by $i_g(x) := gxg^{-1}$. Let $I_G := \{i_g \mid g \in G\}$.
 - (a) Prove that Aut(G), the set of all automorphisms of G, forms a group under composition.
 - (b) Prove that I_G is a subgroup of Aut(G).
 - (c) Prove that I_G is a normal subgroup of Aut(G).
- 7. List all automorphisms of \mathbb{Z}_{12} . No proof necessary.
- 8. Let H be a subgroup of a group G, and let $g \in G$.
 - (a) Is gHg^{-1} always a subgroup of G? Prove your answer.

- (b) Is gHg^{-1} always isomorphic to H? Prove your answer.
- 9. (a) Does the symmetric group S_7 have any cyclic subgroups of order 9? Explain.
 - (b) What is the smallest n for which S_n contains a permutation of order 10? What about order 9? Explain.
- 10. Prove or disprove the following:
 - (a) If $f: G \to H$ is a group homomorphism, and K is a subgroup of H, then $f^{-1}(K)$ is a subgroup of G.
 - (b) If $f: G \to H$ is a group homomorphism, and K is a subgroup of H, then $f^{-1}(K)$ is a normal subgroup of G.
 - (c) If $f: G \to H$ is a group homomorphism, and K is a normal subgroup of H, then $f^{-1}(K)$ is a normal subgroup of G.
 - (d) If $f: G \to H$ is a group homomorphism, and L is a normal subgroup of G, then f(L) is a normal subgroup of H.
- 11. Do the $n \times n$ elementary row-operation matrices of $GL(n, \mathbb{R})$ generate $GL(n, \mathbb{R})$? Explain.
- 12. Let G be the set of all functions $\mathbb{R} \to \mathbb{R}$.
 - (a) Does composition make G into a group? Explain.
 - (b) Does addition (of functions) make G into a group? Explain.
 - (c) For each group structure/operation, is $H := \{f \in G \mid f(5) = 0\}$ a normal subgroup of G? (Explain.) If so, determine whether $G/H \cong \mathbb{R}$.
- 13. Let G be the group of all permutations of \mathbb{Z} . Let H be the subset of G containing all permutations that fix all nonpositive integers (i.e., f(x) = x for all $x \leq 0$). Let $\sigma \in G$ be defined by $\sigma(x) := x + 1$ for all $x \in \mathbb{Z}$.
 - (a) Is H a subgroup of G? Prove your answer.
 - (b) Computer the left coset σH and the right coset $H\sigma$. Are they equal? Is one contained in the other?
 - (c) How is this example related to Homework 2 # 9?
- 14. Read Ravi Vakil's advice on attending seminar talks: http://math.stanford.edu/ ~vakil/potentialstudents.html. What (if anything) surprised you? What do you hope to try when attending a future talk?