Homework 5

Math 653, Fall 2019

This homework is due on Thursday, September 26.

1. Read Hungerford, sections 1.7-1.8.
(a) Section $1.7 \# 2,5$
(b) Section $1.8 \# 1,5,6$
(c) (These problems are not to be turned in.) Section 1.7 \#1, 3, 6
(d) (These problems are not to be turned in.) Section $1.8 \# 9,11$
2. Prove or disprove: Let G be a group. If $a \in G$ and $b \in G$ both have order 2, then $a b$ has order 1,2 , or 4 .
3. (a) Is S_{n} generated by every set consisting of all 3-cycles and a single transposition? Explain.
(b) Is S_{n} generated by all 4-cycles? Prove your answer.
4. The Third Isomorphism Theorem gives an isomorphism between $(\mathbb{Z} / 36 \mathbb{Z}) /(6 \mathbb{Z} / 36 \mathbb{Z})$ and $\mathbb{Z} / 6 \mathbb{Z}$.
(a) Give a formula for this isomorphism.
(b) Are there other isormorphisms between these two groups? If so, list them (and explain why your list is complete). If not, explain why not.
5. On Homework 2, you showed that $H_{n}:=\left\{\sigma \in S_{n} \mid \sigma(n)=n\right\}$ is a subgroup of S_{n} that is isomorphic to S_{n-1}.
(a) Conjugate H_{n} by the transposition $(1, n)$. Which subgroup of S_{n} do you get? (Prove your answer.)
(b) Is H_{n} normal in S_{n} ? Explain.
6. Determine (and then prove) for which positive integers n the following claim is true: Every index-n subgroup is normal..
7. For each of the following, either give an example of such a group or prove that no such group exists.
(a) An infinite group in which every non-identity element has order 2.
(b) An infinite group in which every non-identity element has order 2 or 4.
(c) An infinite group in which every non-identity element has order 2 or 6 .
(d) A group in which every element has finite order, and for every positive integer n there is an element of order n.
(e) A non-trivial group G such that G is isomorphic to $G \times G$.
(f) A group G such that every finite group is isomorphic to some subgroup of G.
(g) For a positive integer m, a group G_{m} with exactly m normal subgroups.
8. Are there groups G_{1}, G_{2}, H_{1}, and H_{2}, such that $G_{1} \times G_{2}$ is isomorphic to $H_{1} \times H_{2}$, but no G_{i} is isomorphic to any H_{j} ? Prove your answer.
9. Suggest a problem for the first exam (which is on Thursday, October 3).
