Homework 7

Math 653, Fall 2019

This homework is due on Thursday, October 10.

1. Read Hungerford, section 2.1.
(a) Section $2.1 \# 5,7,8,9,11$
(b) (These problems are not to be turned in.) Section 2.1 \#1, 2, 3
(c) (This problem is not to be turned in.) Prove or disprove: Let $a, b \in \mathbb{Z}$ with $a \neq b$. If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of a free abelian group F, then so is $\left\{x_{1}+a x_{2}, x_{2}+\right.$ $\left.b x_{1}, x_{3}, \ldots, x_{n}\right\}$.
2. (a) Is the group \mathbb{Q}^{2} isomorphic to \mathbb{Q} ? Prove your answer.
(b) Is \mathbb{Q} a free abelian group? Prove your answer.
3. Give an example of the following (and prove your answers):
(a) A linearly independent subset of \mathbb{Z}^{3} that can NOT be extended to a basis of \mathbb{Z}^{3}.
(b) A generating set of \mathbb{Z}^{3} that does NOT contain a basis of \mathbb{Z}^{3}.
4. Prove or disprove: If a free abelian group G is generated by n elements, then the rank of G is at most n.
5. Prove the part of the proof of Theorem 1.6 that we skipped in class: Let F be a free abelian group with basis $\left\{x_{1}, y_{2}, \ldots, y_{n}\right\}$. Let G be a nontrivial subgroup of F. Assume $v:=d_{1} x_{1} \in G$, where d_{1} is the minimal element of the set S of all positive integers s for which there exists a basis $\left\{z_{1}, \ldots, z_{n}\right\}$ of F and integers $k_{i} \in \mathbb{Z}$ such that $s z_{1}+\left(k_{2} z_{2}+\cdots+k_{n} z_{n}\right) \in G$. Let H be the free abelian subgroup of F generated by $\left\{y_{2}, \ldots, y_{n}\right\}$. Then:

$$
\langle v\rangle+(G \cap H)=G
$$

6. Let $G:=\{(4 m+10 n, 6 m+20 n) \mid m, n \in \mathbb{Z}\}$. Show that G is a subgroup of $F:=\mathbb{Z}^{2}$, and then find a basis $\left\{x_{1}, x_{2}\right\}$ of F and positive integers d_{1} and d_{2} satisfying the conditions of Theorem 1.6 (for this F and G). Prove your answer.
7. (Challenge problem: optional). Consider $G:=5 \mathbb{Z} \times 6 \mathbb{Z}<F:=\mathbb{Z} \times \mathbb{Z}$. For this subgroup/group, find a basis $\left\{x_{1}, x_{2}\right\}$ of F and positive integers d_{1} and d_{2} satisfying the conditions of Theorem 1.6.
