Homework 9

Math 653, Fall 2019

This homework is due on Thursday, October 24.

- 1. Read Hungerford, sections 2.4 and 2.5. Skim section 2.6
 - (a) What is an *inner automorphism*?
 - (b) Section 2.4 #7, 8, 10
 - (c) Section 2.5 # 6, 8, 9
 - (d) Section 2.6 #1
 - (e) (These problems are not to be turned in.) Section 2.4 #13
 - (f) (These problems are not to be turned in.) Section 2.5 #1, 10
- 2. Does the function $\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$, given by $(a, x) \mapsto ax$, define a group action? Explain.
- 3. Let G be a finite group with $|G| = p(q_1q_2 \dots q_r)$ where p is prime and the q_i 's are prime. *Prove or disprove*: If $p > q_1q_2 \dots q_r$, then every order-p subgroup of G is normal.
- 4. Prove or disprove: Let $G = \langle g \rangle$ be a cyclic group of (finite) order n, acting on a set S. Let $x \in S$. Then there exists a divisor d of n such that (a) the elements $x, gx, \ldots, g^{d-1}x$ are distinct, (b) $g^d x = x$, and (c) the orbit of x is $\{x, gx, \ldots, g^{d-1}x\}$.
- 5. Let G be a finite group acting on a finite set S of size at least 2. Assume that G acts transitively on S, that is, for every $x, y \in S$, there exists $g \in G$ such that gx = y.
 - (a) Let $x \in S$. Prove that the orbit of x is S.
 - (b) Let $x, y \in S$. Prove that there exists $g \in G$ such that $gG_xg^{-1} = G_y$. (Recall that G_x denotes the stabilizer of x.)
 - (c) Let $x \in S$. Prove that $|S| = [G : G_x]$, and conclude that |S| divides |G|.
- 6. Compute the *centralizers* in S_5 of (1234) and of (123)(45). Prove your answers.
- 7. Prove the alternating version of Cayley's Theorem: Every finite group is isomorphic to a subgroup of A_n for some n.
- 8. Find all Sylow 2-subgroups of S_4 . Which (known) group is each isomorphic to?
- 9. Prove that every order-132 group is *not* simple.
- 10. Prove that if G is a group of order 3825, then every normal subgroup of order 17 is contained in the center of G.
- 11. Suggest a problem for the next exam (which is on Thursday, November 7) pertaining to any topic in Chapter 2.