Math 152 Week-in-Review

Exam 3 Review

1. Determine if the series converges or diverges. FULLY explain your reasoning.
(a) $\sum_{n=1}^{\infty} \frac{2+3 \cos n}{n^{3}+4 n^{2}}$
(b) $\sum_{n=2}^{\infty} \frac{n+1}{5 n^{2}-2}$
(c) $\sum_{n=3}^{\infty} \frac{5+\sin n}{n-4 \sqrt{n}}$
(d) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n}$
2. Determine if the series converges absolutely, converges conditionally, or diverges. FULLY explain your reasoning.
a.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n(3+\ln n)^{3}}$
b.) $\sum_{n=1}^{\infty} \frac{2}{n \sqrt{n}}$
c.) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n+1}$
d.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{5 n+1}$
e.) $\sum_{n=1}^{\infty} \frac{(-10)^{n} n!}{(2 n+3)!}$
3. Find the radius and interval of convergence for $\sum_{n=2}^{\infty} \frac{(x+3)^{n}}{5^{n} \sqrt{n-1}}$. FULLY explain your reasoning.
4. Find the radius and interval of convergence for $\sum_{n=0}^{\infty} \frac{(2 x-3)^{n+1} n!}{100^{n}}$. FULLY explain your reasoning.
5. If $\sum_{n=0}^{\infty} c_{n}(x+2)^{n}$ converges at $x=5$, on what interval are we guaranteed convergence?
6. For the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{(n+3)!}$, Use the Alternating Series Estimation Theorem to find an upper bound for the error if we used s_{5} to estimate the sum.
7. Using The Alternating Series Estimation Theorem, what is the smallest value of n that guarantees s_{n} approximates $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+3}$ with error less than $\frac{1}{20}$?
8. Find a power series centered at 0 for the following functions:
a.) $\frac{4}{6-x^{2}}$
b.) $\frac{8 x}{\left(6-x^{2}\right)^{2}}$, by using the result from above.
c.) $\int x^{4} \arctan (5 x) d x$
9. Evaluate $\int_{0}^{1} x^{4} \ln \left(2-x^{3}\right) d x$
10. Find $f^{(26)}(2)$ if $f(x)=\sum_{n=0}^{\infty} \frac{3^{n+1}(x-2)^{n}}{(n+8)!}$ is the Taylor Series for $f(x)$ centered at $a=2$.
11. Find the Taylor Series centered at 4 for $f(x)=\frac{1}{(x+1)^{2}}$.
12. Find a Maclaurin series for $e^{3 x^{2}}$.
13. Express $\int x^{4} \cos \left(5 x^{3}\right) d x$ as a power series about 0 .
14. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!}$
15. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-5)^{n} 2^{2 n+1}}{n!}$
16. Find the third degree Taylor Polynomial for $f(x)=e^{-x}$ at $x=2$.
