Week-in-Review

Exam 1 Review

1. $\int \frac{\cos ^{3}(\ln x)}{x} d x$
2. The force required to hold a spring stretched to a length of 7 m is 5 N . Find the work required to stretch the spring from a length of 4 m to 8 m . The natural length of the spring is 3 m .
3. Find the volume of the solid S whose base is bounded by the region $x^{2}+4 y^{2}=4$, and cross-sections perpendicular to the y-axis are isosceles trianges with height equal to the base.
4. Find the area bounded by $x=3 y-y^{2}$ and $y=-\frac{x}{2}$.
5. $\int \frac{\ln x}{\sqrt{x}} d x$
6. The region bounded by $y=\frac{1}{x^{2}}, x=1, x=e$, and $y=0$ is rotated around the y-axis. Find the volume.
7. The region bounded by $x+y^{2}=4$ and $x-y=2$ is rotated around the line $x=-1$. Set up but do not evaluate an integral representing the volume of the solid.
8. $\int_{0}^{2} x^{2} e^{3 x} d x$
9. Find the area bounded by $y=7-x^{2}$ and $y=2 x^{2}-5$.
10. Set up but do not evaluate an integral for the volume of the solid obtained by rotating the region bounded by $y=x^{2}-x$ and $y=2$ rotated around the line $x=3$.
11. $\int \frac{x^{3}}{\left(x^{2}+1\right)^{8}} d x$
12. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}$, $y=2$, and $x=0$ around the y-axis.
13. $\int \tan ^{6} x \sec ^{4} d x$
14. $\int_{0}^{\pi / 6} \sin ^{2}(5 x) d x$
15. Find $\int e^{x} \sin (8 x) d x$
16. A bucket attached to a 20 pound rope is used to draw water out of an 80 ft well. The bucket weighs 1 pound and holds 26 pounds of water. How much work is done in drawing up one full bucket of water?
17. Consider the region R bounded by $y=x^{3}, y=8$, and $x=0$. Suppose a tank is in the shape of the region R revolved around the y-axis, and the units are measured in meters. If the tank is filled with water to a depth of 3 m , set up but do not evaluate an integral that gives the work done in pumping all the water out of a 1 m high spout. Use ρg for the weight density of water.
