Spring 2019 Math 152

Week in Review 2

courtesy: Amy Austin
(covering sections 6.2)

Section 6.2

1. Find the volume of the solid obtained by revolving the region bounded by $y=\frac{1}{x}, y=0, x=1, x=2$ about the x-axis.
2. Find the volume of the solid obtained by revolving the region bounded by $y=3 x^{5}, y=1$ and $x=0$ about the y-axis.
3. Find the volume of the solid obtained by revolving the region bounded by $y=x^{2}$ and $y=4 x$ about the x-axis, then the y axis.
4. Find the volume of the solid obtained by revolving the region bounded by $y=x^{2}, y=4$, about the line $y=4$.
5. Find the volume of the solid obtained by revolving the region bounded by $x=y^{2}, x=1$, about the line $x=1$.
6. Find the volume of the solid obtained by revolving the region bounded by $y=x, y=\sqrt{x}$, about the line $x=-1$.
7. Refer to the figure below to set up but do not evaluate an integral that finds the volume generated by rotating the given region about the specified line.

(a) R_{2} about $B C$
(b) R_{3} about $A B$
(c) R_{2} about $A B$
8. Find the volume of S where the base of S is the region bounded by $y=x^{2}$ and $y=\sqrt{x}$. The cross sections perpendicular to the x-axis are squares.
9. Find the volume of S where the base of S is the region bounded by $y=x^{2}$ and $y=\sqrt{x}$. The cross sections perpendicular to the y-axis are squares.
10. Find the volume of the solid S where the base of S is the region bounded by $y=x^{2}$ and $y=4$. The cross-sections perpendicular to the y axis are equilateral triangles.
11. Find the volume of the solid S where the base of S is the triangular region with vertices $(0,0),(2,0)$ and $(0,4)$. Cross-sections perpendicular to the x axis are semi-circles.
12. Find the volume of the solid S where the base of S is the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$. Cross sections perpendicular to the x-axis are isosceles triangles where the base and height are equal.
