Fall 2019 Math 152

Week in Review 5

courtesy: Amy Austin
(covering sections 11.1, 11.2)

Section 11.1

1. Find the limit of the following sequences, if it exists. If the sequence diverges, state why.
a.) $a_{n}=\frac{n}{\sqrt{n+2}}$
b.) $a_{n}=\ln (n)-\ln (3 n+1)$
c.) $a_{n}=\frac{(-1)^{n} n}{n^{2}+1}$
d.) $a_{n}=\frac{(-1)^{n} n^{2}}{n^{2}+1}$
e.) $a_{n}=\frac{\ln n}{n}$
2. Suppose $\left\{a_{n}\right\}$ is a decreasing bounded sequence, $a_{1}=2$, and $a_{n+1}=\frac{1}{3-a_{n}}$, find:
a.) a_{4}
b.) the limit of the sequence.
3. Determine whether the following sequences are increasing, decreasing, or non monotonic.
a.) $a_{n}=\frac{1}{n^{5}}$
b.) $a_{n}=\frac{\ln n}{n}$
c.) $a_{n}=\cos (n \pi)$
4. Determine whether the following sequences are bounded.
a.) $a_{n}=\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$
b.) $a_{n}=\left\{\frac{n^{2}}{n+1}\right\}_{n=1}^{\infty}$

Section 11.2

5. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty}(1)$. Does the series coverge?
6. Find the first 5 terms in the sequence of partial sums the series $\sum_{n=1}^{\infty}(-1)^{n}$. Does the series coverge?
7. Suppose $\sum_{n=1}^{\infty} a_{n}$ is a convergent series and $s_{n}=5+\frac{n}{2 n+3}$ is a formula for the nth partial sum. What is the sum of the series?
8. What is the Test For Divergence and explain why the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges.
9. Find the sum of the following series. If it diverges, support your answer.
a.) $\sum_{n=1}^{\infty}\left(\frac{1}{n+5}-\frac{1}{n+6}\right)$
b.) $\sum_{n=2}^{\infty} \ln \left(\frac{n}{n+1}\right)$
c.) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
d.) $\sum_{n=1}^{\infty} 2\left(\frac{1}{7}\right)^{n-1}$
e.) $\sum_{n=1}^{\infty}(-5)\left(\frac{2}{3}\right)^{n}$
f.) $\sum_{n=0}^{\infty} \frac{(-1)^{n}+3^{n+1}}{5^{n}}$
g.) $\sum_{n=2}^{\infty} \frac{(-1)^{n} 2^{n}}{3^{n+1}}$
h.) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n}}{7^{n+1}}$
i.) $4+\frac{8}{5}+\frac{16}{25}+\frac{32}{125}+\ldots$
