Spring 2009 Math 152

Week in Review 2 courtesy: Amy Austin

(covering sections 6.2)

Section 6.2

- 1. Find the volume of the solid obtained by revolving the region bounded by $y = \frac{1}{x}$, y = 0, x = 1, x = 2about the *x*-axis.
- 2. Find the volume of the solid obtained by revolving the region bounded by $y = 3x^5$, y = 1 and x = 0 about the *y*-axis.
- 3. Find the volume of the solid obtained by revolving the region bounded by $y = x^2$ and y = 4x about the *x*-axis, then the *y* axis.
- 4. Find the volume of the solid obtained by revolving the region bounded by $y = x^2$, y = 4, about the line y = 4.
- 5. Find the volume of the solid obtained by revolving the region bounded by $x = y^2$, x = 1, about the line x = 1.
- 6. Find the volume of the solid obtained by revolving the region bounded by y = x, $y = \sqrt{x}$, about the line x = -1.
- 7. Refer to the figure below to set up but do not evaluate an integral that finds the volume generated by rotating the given region about the specified line.

- (a) R_2 about BC
- (b) R_3 about AB
- (c) R_2 about AB
- 8. Find the volume of S where the base of S is the region bounded by $y = x^2$ and $y = \sqrt{x}$. The cross sections perpendicular to the x-axis are squares.

- 9. Find the volume of S where the base of S is the region bounded by $y = x^2$ and $y = \sqrt{x}$. The cross sections perpendicular to the y-axis are squares.
- 10. Find the volume of the solid S where the base of S is the region bounded by $y = x^2$ and y = 4. The cross-sections perpendicular to the y axis are equilateral triangles.
- 11. Find the volume of the solid S where the base of S is the triangular region with vertices (0,0), (2,0) and (0,4). Cross-sections perpendicular to the x axis are semi-circles.
- 12. Find the volume of the solid S where the base of S is the ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$. Cross sections perpendicular to the x-axis are isosceles triangles where the base and height are equal.