Spring 2019 Math 152

Week in Review 3
courtesy: Amy Austin
(covering section 6.3-6.4)

Section 6.3

1. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.
a.) $y=10 x-x^{2}, y=0$ about the y axis.
b.) $y=x^{3}, y=0, x=1, x=2$, about the line $x=-1$.
c.) $y=x^{2}$ and $y=4-x^{2}$, about the line $x=\sqrt{2}$.
2. Using two different methods, set up but do not evaluate the integral that gives the volume of the solid obtained by rotating the region bounded by $y=x^{2}$, $y=3 x$, about the y axis.
3. Using two different methods, set up but do not evaluate the integral that gives the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}, x=0, x=4, y=0$, about the line $y=3$.

Section 6.4

4. How much work is done in lifting a 30 lb barbell from the floor to a height of 4 feet?
5. When a particle is at a distance x meters from the origin, a force of $f(x)=3 x^{2}+2$ Newtons acts on it. How much work is done in moving the object from $x=2$ to $x=4$?
6. A spring has a natural length of 6 inches. If a 5 lb force is required to maintain it to a length of 18 inches, how much work is required to stretch it from 1 foot to 3 feet?
7. Suppose the work needed to stretch a spring from its natural length to a length of 5 feet beyond its natural length is $30 \mathrm{ft}-\mathrm{lb}$.
a.) How much work is done in stretching the spring from 3 feet beyond its natural length to 120 inches beyind its natural length?
b.) How far beyond its natural length will a force of 60 lb keep the spring stretched?
8. A heavy rope, 50 feet long, weighs 0.5 pounds per foot and hangs over the edge of a building 120 feet high. How much work is done in pulling the rope to the top of the building?
9. A 200 pound cable is 300 feet long and hangs vertically from the top of a tall building. How much work is required to pull 20 feet of the cable to the top of the building?
10. An aquarium 10 m long, 2 m wide and 8 m deep is full of water. Find the work required to pump the top 3 feet of water to the top of the aquarium.
11. A tank contains water and has the shape of a trough 6 feet long. The end of the trough is an isosceles triangle with height 3 feet and base length 4 feet. The vertex of the triangle is at the bottom. Find the work required to pump all of the water to the top of the tank.
12. A tank in the shape of sphere with radius 4 m is half full of water. The water is pumped from a spout at the top of the tank that is 1 m high. Set up but do not evaluate an integral done in pumping the water through the spout. CLEARLY MARK YOUR AXIS AND WHAT DIRECTION IS POSITIVE!
13. A tank in the shape of cone with radius 1 inch and height 15 inches is full of water to a depth of 7 inches. Set up but do not evaluate an integral done in pumping the water through the spout. CLEARLY MARK YOUR AXIS AND WHAT DIRECTION IS POSITIVE!
