Spring 2020 Math 251

Week in Review I courtesy: Amy Austin (covering sections 12.1-12.5)

- 1. Find the equation of the sphere with center (1, 4, 3) that touches the xy plane.
- 2. Does the sphere $x^2 + y^2 + z^2 + 4x 2y 8z = 5$ intersect the xz plane? If so, what is the intersection?
- 3. Find the equation of the sphere if one of their diameters has endpoints (5, 1, 5) and (7, 3, 9).
- 4. What does y = 6 x represent in \mathbb{R}^3 ?
- 5. What does $x^2 + z^2 = 16$ represent in \mathbb{R}^3 ?
- 6. Given $\mathbf{a} = \langle -7, 1, 2 \rangle$ and $\mathbf{b} = \langle 5, -1, 1 \rangle$, find a unit vector in the direction of $\mathbf{a} + 2\mathbf{b}$.
- 7. For the picture seen below, write \mathbf{v} in terms of \mathbf{u} and \mathbf{w} .

- 8. Compute $\mathbf{a} \cdot \mathbf{b}$ if
 - a.) $\mathbf{a} = \langle 4, 5, -1 \rangle$ and $\mathbf{b} = \langle 2, 1, 3 \rangle$.
 - b.) $|\mathbf{a}| = 2$, $|\mathbf{b}| = 5$ and $\theta = 120^{\circ}$.
 - c.) $|\mathbf{a}| = 6$, $|\mathbf{b}| = 4$ and \mathbf{a} is perpendicular to \mathbf{b} .
 - d.) $|\mathbf{a}| = 6$, $|\mathbf{b}| = 4$ and \mathbf{a} is parallel to \mathbf{b} .
- 9. The points A(0, -1, 6), B(2, 1, -3) and C(5, 4, 2) form a triangle. Find $\angle C$.

- 10. Find the cross product of $\langle 1, 1, 3 \rangle$ and $\langle -2, -1, -5 \rangle$.
- 11. Find $|\mathbf{u} \times \mathbf{v}|$ and determine if $\mathbf{u} \times \mathbf{v}$ points in or out of the page.

- 12. Find a vector that is orthogonal to the plane that passes through the points P(1,0,1), Q(2,3,4) and R(2,1,1).
- 13. Find a vector equation of the line that passes through the point (2, -5, 1) and is parallel to the vector $\langle 8, 10, -7 \rangle$.
- 14. Find parametric equations and a symmetric equations for the line passing through the points (-2, 3, 4) and (5, 2, 8).
- 15. Do the lines $\frac{x-1}{2} = y = \frac{z-1}{4}$ and $x = \frac{y+2}{2} = \frac{z+2}{3}$ intersect?

If so, what is the point of intersection?

- 16. Find an equation of the plane passing through the point (3, 4, 5) and perpendicular to $\langle -1, 2, 5 \rangle$.
- 17. Find the equation of the plane that passes through the points P(1,0,1), Q(2,3,4) and R(2,1,1).
- 18. Find an equation of the plane passing through the point (-3, 1, 4) and is perpendicular to the line x = 2 3t, y = 3 t, z = t.
- 19. Find an equation of the plane passing through the point (-1, -3, 2) that contains the line x = -1 2t, y = 4t, z = 2 + t.
- 20. Consider the planes z = x + y and 2x 5y z = 1.
 - a.) Find the angle between the planes.
 - b.) Find the line of intersecton of the planes.