Spring 2020 Math 251

Week in Review I

courtesy: Amy Austin
(covering sections 12.1-12.5)

1. Find the equation of the sphere with center $(1,4,3)$ that touches the $x y$ plane.
2. Does the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-8 z=5$ intersect the $x z$ plane? If so, what is the intersection?
3. Find the equation of the sphere if one of their diameters has endpoints $(5,1,5)$ and $(7,3,9)$.
4. What does $y=6-x$ represent in \mathbb{R}^{3} ?
5. What does $x^{2}+z^{2}=16$ represent in \mathbb{R}^{3} ?
6. Given $\mathbf{a}=\langle-7,1,2\rangle$ and $\mathbf{b}=\langle 5,-1,1\rangle$, find a unit vector in the direction of $\mathbf{a}+2 \mathbf{b}$.
7. For the picture seen below, write \mathbf{v} in terms of \mathbf{u} and \mathbf{w}.

8. Compute $\mathbf{a} \cdot \mathbf{b}$ if
a.) $\mathbf{a}=\langle 4,5,-1\rangle$ and $\mathbf{b}=\langle 2,1,3\rangle$.
b.) $|\mathbf{a}|=2,|\mathbf{b}|=5$ and $\theta=120^{\circ}$.
c.) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and \mathbf{a} is perpendicular to \mathbf{b}.
d.) $|\mathbf{a}|=6,|\mathbf{b}|=4$ and \mathbf{a} is parallel to \mathbf{b}.
9. The points $A(0,-1,6), B(2,1,-3)$ and $C(5,4,2)$ form a triangle. Find $\angle C$.
10. Find the cross product of $\langle 1,1,3\rangle$ and $\langle-2,-1,-5\rangle$.
11. Find $|\mathbf{u} \times \mathbf{v}|$ and determine if $\mathbf{u} \times \mathbf{v}$ points in or out of the page.

12. Find a vector that is orthogonal to the plane that passes through the points $P(1,0,1), Q(2,3,4)$ and $R(2,1,1)$.
13. Find a vector equation of the line that passes through the point $(2,-5,1)$ and is parallel to the vector $\langle 8,10,-7\rangle$.
14. Find parametric equations and a symmetric equations for the line passing through the points $(-2,3,4)$ and $(5,2,8)$.
15. Do the lines $\frac{x-1}{2}=y=\frac{z-1}{4}$ and $x=\frac{y+2}{2}=\frac{z+2}{3}$ intersect?
If so, what is the point of intersection?
16. Find an equation of the plane passing through the point $(3,4,5)$ and perpendicular to $\langle-1,2,5\rangle$.
17. Find the equation of the plane that passes through the points $P(1,0,1), Q(2,3,4)$ and $R(2,1,1)$.
18. Find an equation of the plane passing through the point $(-3,1,4)$ and is perpendicular to the line $x=2-3 t, y=3-t, z=t$.
19. Find an equation of the plane passing through the point $(-1,-3,2)$ that contains the line $x=-1-2 t$, $y=4 t, z=2+t$.
20. Consider the planes $z=x+y$ and $2 x-5 y-z=1$.
a.) Find the angle between the planes.
b.) Find the line of intersecton of the planes.
