Math 251 Engineering Math III
Spring 2020
Exam 2 Review
03/02/20

1. Sketch the domain of $f(x, y)=\sqrt{x^{2}-y}$ and describe the level curves.
2. Sketch the domain of $f(x, y)=\ln \left(y^{2}+x^{2}-1\right)$ and describe the level curves.
3. What are the level surfaces to the equation $f(x, y, x)=x+y+z$?
4. For $f(x, y)=\sin \left(x^{2}+y^{2}\right)$, find all first and second partial derivatives.
5. Find an equation for the tangent plane to the surface $z=2 x^{2}+y^{2}$ at the point $(1,1)$.
6. Find the tangent plane to the surface $2 x y+3 y z+7 x z=-9$ at the point $(1,2,-1)$.
7. If $z=x^{3} y^{2}$, find the differential, $\mathrm{d} z$, and explain what it measures.
8. Consider a rectangular box with length l, width w and height h. If A is the surface area of the box, find the differential, $\mathrm{d} A$.
9. The height of a cone was measured to be 3 cm with a maximum error of 0.1 cm and the radius of the cone is measured to be 2 cm with a maximum error of 0.2 cm . Use differentials to estimate the maximum error in the calculated volume of the cone.
10. Find the equation of the tangent plane to the surface $f(x, y)=x e^{x y}$ at the point $(1,0,1)$ and use this plane to approximate $f(1.1,-0.2)$.
11. Use a linear approximation to estimate $\left((2.1)^{2}+(0.1)^{3}\right)^{3}$
12. Use differentials to approximate $\sqrt{(3.02)^{2}+(1.97)^{2}+(5.99)^{2}}$.
13. If $z=e^{x^{2}+y^{2}}, x=e^{t}$. $y=\cos t$, find $\frac{d z}{d t}$.
14. For $z=x y, x=\cos \left(s t^{2}\right), y=\sin e^{t}$, find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$.
15. The radius and height of a circular cylinder change with time. When the height is 1 meter and the radius is 2 meters, the radius is increasing at a rate of 4 meters per second and the height is decreasing at a rate of 2 meters per second. At that same instant, find the rate at which the volume is changing.
16. Let $f(x, y)=\sqrt{x y}$. Find the directional derivative of f at the point $P(4,1)$ in the direction from P to $Q(6,2)$.
17. Let $f(x, y)=\sqrt{x y}$. What is the direction of the largest rate of change at the point $P(4,1)$?
18. Let $f(x, y)=e^{x+y}$. What is the maximum rate of change at the point $P(-1,1)$?
19. Find an equation for the tangent plane and normal line to the surface $x^{2}-5 y^{2}+z^{2}=4$ at the point $(7,3,0)$.
20. For the $f(x, y)=2 x^{3}-x y^{2}+5 x^{2}+y^{2}+5$, find all local minima, maxima, and saddle points.
21. Find the absolute maximum and minimum values of $f(x, y)=7+x y-x-2 y$ over the closed triangular region with verticies $(1,0),(5,0),(1,4)$.
22. Find the absolute maximum and minimum values of $f(x, y)=x y^{2}+2$ over the region $D=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3\right\}$.
23. Use the method of Lagrange to find the maximum and minimum values of $f(x, y)=6 x+6 y$ subject to the constraint $x^{2}+y^{2}=18$.
24. Use the method of Lagrange to find the maximum and minimum values of $f(x, y)=y^{2}-x^{2}$ subject to the constraint $\frac{1}{4} x^{2}+y^{2}=25$.
25. Use the method of Lagrange to find the extreme values of $f(x, y, z)=x y z$ subject to the constraint $2 x+y+3 z=60$.
