MATH 251 Spring 2020

EXAM III Review Via ZOOM ID 604-163-077
 April 6, 2020 6-8PM

1. Let R be the region in the $x y$-plane bounded by $y=2 x, x=10$, and $y=-1$. Set up but do not evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d A$ in the order $d y d x$ and $d x d y$.
2. Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} e^{-x^{2}-y^{2}} d y d x$.
3. Let D be the region bounded by $\mathrm{y}=0, \mathrm{y}=\mathrm{x}^{2}$, and $\mathrm{x}=3$. Find $\iint_{D} 3 x \cos y d A$.
4. Compute $\int_{0}^{3} \int_{3 y}^{9} 7 e^{x^{2}} d x d y$.
5. Find $\iint_{D} \sin \left(4 x^{2}+4 y^{2}\right) d A$ where D is the region $y \geq 0$ between the circles with center at $(0,0)$ and radii 1 and 3 .
6. Let R be the region that lies to the left of the y-axis between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=16$. Find $\iint_{R} 5(x+y)$.
7. Find the volume of the sold that is above the $x y$ plane, below the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=64$ but inside the cylinder $x^{2}+y^{2}=9$.
8. Let D be the triangular region with vertices $(0,1),(1,2)$, and $(4,1)$. Set up but do not evaluate $\iint_{D} 7 y^{2} d \mathcal{A}$ in the order $d y d x$ and $d x d y$.
9. Let $\mathrm{D}=\left\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x^{2}\right\}$. Evaluate $\iint_{D} \frac{5 y}{6 x^{5}+1} d A$.
10. Let E be the region bounded by $y=x^{2}$ and $x=y^{2}$ and $z=0$ and $z=5 x+5 y$. Compute $\iiint_{E} 4 x y d V$.
11. Convert to cylindrical coordinates: $\int_{-2}^{0} \int_{0}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} x z \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$.
12. Find the volume of the solid that is enclosed by the cylinder $x^{2}+y^{2}=9$ and the planes $y+z=12$ and $z=2$.
13. Find the volume of the solid enclosed by the paraboloids $y=x^{2}+z^{2}$ and $y=32-x^{2}-z^{2}$.
14. Express $\iiint_{E} f(x, y, z) d V$ in the order $d y d z d x$ if E is the solid bounded by $y=x^{2}, z=0, y+4 z=16$.
15. Convert to Cylindrical: $\int_{-9}^{9} \int_{-\sqrt{81-y^{2}}}^{\sqrt{81-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{13} x z d z d x d y$.
16. Evaluate in spherical coordinates. $\int_{0}^{10} \int_{0}^{\sqrt{100-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{200-x^{2}-y^{2}}} y z d z d y d x$
17. Find $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V$ where E is the part of the ball centered at the origin with radius 2 in the first octant.
18. Let E be the region that lies between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=9$. Set up but do not evaluate $\iiint_{E}(x+y+z) d V$ in spherical coordinates.
19. Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$ plane and below the cone $z=\sqrt{x^{2}+y^{2}}$.
