Spring 2020 Math 251

Week in Review 2

courtesy: Amy Austin
(covering sections 14.1, 14.3, 14.4)

1. Find and sketch the domain of the following functions.
a.) $f(x, y)=\ln (y-3 x)$
b.) $f(x, y)=\sqrt[4]{x y}$
c.) $f(x, y)=\frac{\sqrt{8-x^{2}-y^{2}}}{x+2 y}$
2. Sketch several level curves for the following surfaces:
a.) $f(x, y)=2+4 x-y$
b.) $f(x, y)=x+y^{2}$
c.) $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
d.) $f(x, y)=\sqrt{x^{2}-y^{2}}$
3. Describe the level surfaces of $f(x, y, z)=x+y+z$.
4. Describe the level surfaces of $f(x, y, z)=x^{2}+y^{2}+$ z^{2}.
5. Find $f_{x}(-1,2)$ and $f_{y}(-1,2)$ for $f(x, y)=x^{3}-y^{4}-6 x^{2} y^{3}$
6. Find $f_{x}(x, y)$ and $f_{y}(x, y)$ for $f(x, y)=x^{2} e^{\cos \left(2 x^{4} y^{2}\right)}$
7. Find all higher order partial derivatives for $f(x, y)=\ln (2 x+3 y)$
8. Find the equation of the tangent plane to the surface $z=x^{3}-3 y^{2}$ at the point $(-1,1,-4)$
9. Find the equation of the tangent plane to the surface $z=e^{x-y}$ at the point $(2,2,1)$. What is the equation of the normal line to this tangent plane the point $(2,2,1)$?
10. Find the differential of $z=e^{-2 x} \sin (\pi y)$.
11. Use differentials to approximate $f(1.02,0.97)$ for $f(x, y)=1-x y \cos (\pi y)$
12. The length and width of a rectangle are measured as 30 cm and 24 cm , respectively, with an error in measurement of 0.1 cm in both. Use differentials to approximate the maximum error in the calculated area of the rectangle.
