Spring 2020 Math 251

Week in Review 3

courtesy: Amy Austin
(covering sections 14.5, 14.6)

1. If $y=x^{4}$ and $x=\tan t$, find $\frac{d y}{d t}$.
2. If $z=\ln (9 x-6 y), x=\cos \left(e^{t}\right), y=\sin ^{3}(4 t)$, find $\frac{d z}{d t}$.
3. If $w=u^{2}+2 u v, u=r \ln s, v=2 r+s$, find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.
4. If $z=r^{3}+s+v^{2}, r=x e^{y}, s=y e^{x}, v=x^{2} y$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
5. If $z=x^{4}+x y^{3}, x=u v^{3}+w^{4}, y=u+v e^{w}$, find find $\frac{\partial z}{\partial u}$ when $u=1, v=1, w=0$.
6. If $u=x^{4} y+y^{2} z^{3}, x=2 r s+3 s t, y=r s^{2} t$, $z=r^{2} e^{2 t}$, find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.
7. The height and radius of a right circular cone are changing with respect to time. If the base radius of the cone is increasing at a rate of $\frac{1}{4}$ inches per minute while the height is decreasing at a rate $\frac{1}{10}$ inches per minute, find the rate in which the volume if the cone is changing when the radius of the cone is 2 inches and the height of the cone is 1 inch .
8. The length l, width w and height h of a box change with time. At a certain instant, the dimensions are $l=1 \mathrm{~m}, w=3 \mathrm{~m}$ and $h=2 \mathrm{~m}$, and l and w are increasing at rate of $2 \mathrm{~m} / \mathrm{s}$ while h is decreasing at a rate of $3 \mathrm{~m} / \mathrm{s}$. At that same instant, find the rate at which the surface area is changing.

Definition: The directional derivative of
$z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=\langle a, b\rangle$ is $D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a+$ $f_{y}\left(x_{0}, y_{0}\right) b=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot\langle a, b\rangle$.

9. Given $f(x, y)=x y \sin x$, find the directional derivative at the point $\left(\frac{\pi}{2},-1\right)$ in the direction $\mathbf{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.
10. Given $f(x, y)=x^{3} y^{2}$, find the directional derivative at the point $(-1,2)$ in the direction $4 \mathbf{i}-3 \mathbf{j}$.
11. If $f(x, y)=x^{2} e^{x y}$, find the rate of change of f at the point $(1,0)$ in the direction of the point $P(1,0)$ to the point $Q(5,2)$.
12. Find the gradient of $f(x, y)=x^{2}+y^{3}-4 x y$ at the point $(1,-1)$.
13. If $f(x, y)=x^{2} e^{-2 y}, P(2,0), Q(-3,1)$.
a.) Find the directional derivative at Q in the direction of P.
b.) Find a vector in the direction in which f increases most rapidly at P, and find the rate of change of f in that direction.
14. Find the maximum rate of change of $f(x, y)=\sin ^{2}(3 x+2 y)$ at the point $\left(\frac{\pi}{6},-\frac{\pi}{8}\right)$ and the direction in which it occurs.
15. Find the equation of the tangent plane to the surface $f(x, y)=x^{2}+y^{2}-4 x y$ at the point $(1,2)$.
16. Find the equation of the tangent plane to the surface $x y z^{3}=8$ at the point $(2,2,1)$.
17. Find the equation of the tangent plane to the surface $x y+y z+z x=5$ at the point $(1,2,1)$.

