Spring 2020 Math 251

Week in Review 4

courtesy: Amy Austin
(covering sections 15.1)

Partial Integration and Iterated Integrals: Suppose $z=f(x, y)$ is a function of two variables that is integrable over the rectangle $R=[a, b] \times[c, d]$. This means $a \leq x \leq b$ and $c \leq y \leq d$.
(a) We use the notation $\int_{a}^{b} f(x, y) d x$ to mean that y is held fixed and $f(x, y)$ is integrated with respect to x from $x=a$ to $x=b$. This is called the partial integration of $f(x, y)$ with respect to x.
(b) We use the notation $\int_{c}^{d} f(x, y) d y$ to mean that x is held fixed and $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$. This is called the partial integration of $f(x, y)$ with respect to y.
(c) An iterated integral is an integral of the form $\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$ or $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$.

1. Find $\int_{0}^{\pi / 4} x \sin (3 y) d y$
2. Find $\int_{1}^{e} \frac{y \ln (x)}{x} d x$
3. Evaluate $\int_{0}^{2} \int_{0}^{3}(x y+x+y) d y d x$ and $\int_{0}^{3} \int_{0}^{2}(x y+x+y) d x d y$

Fubini's Theorem: If f is continuous on the rectangle $R=[a, b] \times[c, d]$, then
(a) $\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$.
(b) In the case where $f(x, y)=g(x) h(y)$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} g(x) h(y) d y d x=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y
$$

4. $\int_{-3}^{3} \int_{0}^{\pi / 2}\left(y+y^{2} \cos x\right) d x d y$
5. Find $\iint_{R} \frac{x}{y^{2}} d A$, where $R=[0,4] \times[1,2]$
6. Find $\int_{0}^{2} \int_{0}^{1}(2 x+3 y)^{3} d x d y$
7. Find $\iint_{R} e^{2 x+y} d A$, where $R=[0, \ln 2] \times[0, \ln 3]$
8. Find $\iint_{R}(y \cos (x y)) d A$, where $R=[0,2] \times[0, \pi]$
9. Find $\iint_{R} x \sec ^{2} y d A$, where $R=\left\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq \frac{\pi}{4}\right\}$

FACT: If $f(x, y) \geq 0$ and f is continuous on the rectangle R, then the volume V of the solid that lies above R and under the surface $f(x, y)$ is $V=\iint_{R} f(x, y) d A$
10. Find the volume of the solid S that is bounded by the paraboloid $x^{2}+y^{2}+z=16, z=0,0 \leq x \leq 4$, $0 \leq y \leq 4$.

