Spring 2020 Math 251

Week in Review 5

courtesy: Amy Austin
(covering sections 15.2-15.3)

Type I: A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x, that is $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$.

If f is continuous on a type I region $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Type II: A plane region D is said to be of type II if it lies between the graphs of two continuous functions of y, that is $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$.

If f is continuous on a type II region $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

1. Sketch the region of integration and evaluate $\iint_{D} x e^{y} d A$ where D is the region bounded by $y=0$, $y=x^{2}$ and $x=2$.
2. Sketch the region of integration and evaluate $\int_{1}^{4} \int_{1}^{\sqrt{x}}(x+y) d y d x$.
3. Sketch the region of integration and evaluate $\int_{0}^{1} \int_{0}^{y}\left(3+x^{2} y\right) d x d y$
4. Set up but do not evaluate both a type I and type II integral for $\iint_{D} y e^{x} d A$, where D is the triangular region with vertices $(0,0),(1,1)$ and $(2,0)$.
5. Sketch the region of integration and change the order of integration.
(i) $\int_{0}^{4} \int_{\sqrt{y}}^{2} f(x, y) d x d y$
(ii) $\int_{1}^{2} \int_{0}^{\ln x} f(x, y) d y d x$
6. Set up but do not evaluate a double itegral that gives the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(1,2)$ and $(2,1)$
7. Evaluate $\int_{0}^{2} \int_{x}^{2} e^{-y^{2}} d y d x$
8. Evaluate $\int_{0}^{2} \int_{y^{2}}^{4} \sqrt{x} \sin x d y d x$

Recall: If $P(x, y)$ is a point in the $x y$-plane, we can represent the point P in polar form: Let r be the distance from O to P and let θ be the angle between the polar axis and the line $O P$. Then the point P is represented by the ordered pair (r, θ), and r, θ are called the polar coordinates of P. Furthermore,
a.) $x=r \cos (\theta), y=r \sin (\theta)$
b.) $\tan (\theta)=\frac{y}{x}$, thus $\theta=\arctan \left(\frac{y}{x}\right)$
c.) $x^{2}+y^{2}=r^{2}$

Change to Polar Coordinates in a Double Integral: If f is continuous on a polar rectangle R given by $0 \leq a \leq r \leq b, \alpha \leq \theta \leq \beta$, where $0 \leq \beta-\alpha \leq 2 \pi$, then

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

9. Evaluate $\iint_{R}(x+2) d A$, where R is the region bounded by the circle $x^{2}+y^{2}=4$.
10. Evaluate $\iint_{R} 4 y d A$, where R is the region in the second quadrant bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
11. Evaluate $\iint_{R} 3 x^{2} d A$, where R is the region in the first quadrant enclosed by the by the circle $x^{2}+y^{2}=9$ and the lines $y=0$ and $y=x$.
12. Change $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} x^{2} d y d x$ to a polar double integral. Do not evaluate
13. Change $\int_{0}^{4} \int_{0}^{\sqrt{4 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ to a polar double integral. Do not evaluate
14. Set up but do not evaluate a double integral that gives the volume of the solid that lies above the $x y$-plane, below the sphere $x^{2}+y^{2}+z^{2}=81$ and inside the cylinder $x^{2}+y^{2}=4$
15. Find the volume of the solid bounded by the paraboloids $z=20-x^{2}-y^{2}$ and $z=4 x^{2}+4 y^{2}$
