Spring 2020 Math 251

Week in Review 7

courtesy: Amy Austin
(covering sections 16.4-16.9)
Green's Theorem: Let C be a positively oriented (counterclockwise) piecewise-smooth simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\oint_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

1. Evaluate $\oint_{C} y^{2} d x+x d y$ where C is the triangular path from $(1,1)$ to $(3,1)$ to $(2,2)$ then back to $(1,1)$.
2. Evaluate $\oint_{C} y^{2} d x+x^{2} d y$ where C is the boundary of the region bounded by the semicircle $y=\sqrt{4-x^{2}}$ and the x axis. Assume positive orientation.
3. Suppose a particle travels one revolution clockwise around the unit circle under the force field $\mathbf{F}(x, y)=\left\langle e^{x}-y^{3}, \cos (y)+x^{3}\right\rangle$. Find the work done.
4. Find the divergence and curl of $\mathbf{F}=\left\langle x y, x z, x y z^{2}\right\rangle$.
5. If $\mathbf{F}=\left\langle x, e^{y} \sin z, e^{y} \cos z\right\rangle$, Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{r}(t)=\left\langle t^{4}, t, 2 t^{2}\right\rangle$, for $1 \leq t \leq 2$.

Definition: If a smooth parametric surface S is given by $\mathbf{r}(u, v)$, and S is covered just once as (u, v) ranges throughout the parametric domain D, then the surface area of S is

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

6. Find the surface area of the part of the surface $z=2 x^{2}+y+3$ that lies above the triangle with vertices $(0,0),(2,0)$ and $(2,4)$
7. Find the surface area of the part of the plane $2 x+4 y+z=8$ that lies in the first octant.
8. Find the area of the part of the surface $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+z^{2}=2$.

Recall from spherical coordinates, we can parameterize a sphere as $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$ and
$z=\rho \cos \phi$. Thus $r(\theta, \phi)=\langle\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi\rangle$, and

$$
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=\left\langle\rho^{2} \sin ^{2} \phi \cos \theta, \rho^{2} \sin ^{2} \phi \sin \theta, \rho^{2} \sin \phi \cos \phi\right\rangle
$$

and

$$
\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right|=\rho^{2} \sin (\phi)
$$

9. Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$

Definition: Suppose we want to integrate a function $f(x, y, z)$ over a surface S defined by the equation $\mathbf{r}(u, v)$ and S is covered just once as (u, v) ranges throughout the parametric domain D, then the surface integral of f over S is

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

10. Evaluate $\iint_{S}(y+z) d S$ where S is the part of the plane $x+y+z=4$ that lies in the first octant.
11. Set up but do not evaluate $\iint_{S}\left(y^{2}+z^{2}\right) d S$ where S is part of the paraboloid $x=4-y^{2}-z^{2}$ that lies in front of the plane $x=0$
12. Evaluate $\iint_{S}\left(z+x^{2} y\right) d S$ where S is the part of the cylinder $y^{2}+x^{2}=9$ in the first octant that lies between the planes $x=0$ and $x=4$.
13. Evaluate $\iint_{S} z d S$, where S is the part of the sphere $x^{2}+y^{2}+z^{2}=16$ that lies between the planes $z=2$ and $z=2 \sqrt{3}$.

Stokes' Theorem: Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive (counterclockwise) orientation. Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region in \Re^{3} that contains S.

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}
$$

14. Use Stokes' Theorem to find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle z^{2}, y^{2}, x y\right\rangle$ where C is the boundary of the plane $2 x+y+2 z=2$ in the firsrt octant. Orient C to be counterclockwise when looking from above.
15. Use Stokes' Theorem to find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle z^{2}, 2 x, y^{2}\right\rangle$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. Orient C to be counterclockwise when looking from above (which ensures the normal vector points upward).
16. Use Stokes' Theorem to find $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\left\langle x^{2} \sin z, y^{2}, x y\right\rangle$ and S is the part of the paraboliod $z=1-x^{2}-y^{2}$ that lies above the $x y$ plane, oriented upward.

A surface integral over a closed surface can be evaluated as a triple integral over the volume enclosed by the surface.

Divergence Theorem Let E be a simple solid region whose boundary surface has positive (outward) orientation. Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} d V
$$

17. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\langle x+\sin z, 2 y+\cos x, 3 z+\tan y\rangle$ over the sphere $x^{2}+y^{2}+z^{2}=4$.
18. Let S be the surface of the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\left\langle x^{3}, 2 x z^{2}, 3 y^{2} z\right\rangle$.
19. Using the Divergence Theorem, find the flux of the vector field $\mathbf{F}=\langle z \cos y, x \sin z, x z\rangle$ where S is the tetrahendron bounded by the planes $x=0, y=0, z=0$, and $2 x+y+z=2$.
