
Spring 2020 Math 251

Week in Review 7

courtesy: Amy Austin

(covering sections 16.4-16.9)

Green’s Theorem: Let C be a positively oriented (counterclockwise) piecewise-smooth simple closed
curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives
on an open region that contains D, then

∮

C

Pdx+Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dA

1. Evaluate

∮

C

y2 dx+ x dy where C is the triangular path from (1, 1) to (3, 1) to (2, 2) then back to

(1, 1).

2. Evaluate

∮

C

y2 dx+ x2 dy where C is the boundary of the region bounded by the semicircle

y =
√
4− x2 and the x axis. Assume positive orientation.

3. Suppose a particle travels one revolution clockwise around the unit circle under the force field
F(x, y) = 〈ex − y3, cos(y) + x3〉. Find the work done.

4. Find the divergence and curl of F = 〈xy, xz, xyz2〉.

5. If F = 〈x, ey sin z, ey cos z〉, Find
∫

C

F · dr where r(t) = 〈t4, t, 2t2〉, for 1 ≤ t ≤ 2.

Definition: If a smooth parametric surface S is given by r(u, v), and S is covered just once as (u, v)
ranges throughout the parametric domain D, then the surface area of S is

A(S) =

∫∫

D

|ru × rv| dA

6. Find the surface area of the part of the surface z = 2x2 + y + 3 that lies above the triangle with
vertices (0, 0), (2, 0) and (2, 4)

7. Find the surface area of the part of the plane 2x+ 4y + z = 8 that lies in the first octant.

8. Find the area of the part of the surface y = x2 + z2 that lies inside the cylinder x2 + z2 = 2.



Recall from spherical coordinates, we can parameterize a sphere as x = ρ sinφ cos θ, y = ρ sinφ sin θ
and

z = ρ cosφ. Thus r(θ, φ) = 〈ρ sin φ cos θ, ρ sinφ sin θ, ρ cosφ〉, and

rφ × rθ =
〈

ρ2 sin2 φ cos θ, ρ2 sin2 φ sin θ, ρ2 sin φ cosφ
〉

and
|rφ × rθ| = ρ2 sin(φ)

9. Find the surface area of the part of the sphere x2+y2+z2 = 16 that lies above the cone z =
√

x2 + y2

Definition: Suppose we want to integrate a function f(x, y, z) over a surface S defined by the
equation r(u, v) and S is covered just once as (u, v) ranges throughout the parametric domain D,
then the surface integral of f over S is

∫∫

S

f(x, y, z) dS =

∫∫

D

f(r(u, v))|ru × rv| dA

10. Evaluate

∫∫

S

(y + z) dS where S is the part of the plane x+ y + z = 4 that lies in the first octant.

11. Set up but do not evaluate

∫∫

S

(

y2 + z2
)

dS where S is part of the paraboloid x = 4− y2 − z2 that

lies in front of the plane x = 0

12. Evaluate

∫∫

S

(

z + x2y
)

dS where S is the part of the cylinder y2 + x2 = 9 in the first octant that

lies between the planes x = 0 and x = 4.

13. Evaluate

∫∫

S

z dS, where S is the part of the sphere x2 + y2 + z2 = 16 that lies between the planes

z = 2 and z = 2
√
3.

Stokes’ Theorem: Let S be an oriented piecewise-smooth surface that is bounded by a simple,
closed, piecewise-smooth boundary curve C with positive (counterclockwise) orientation. Let F be
a vector field whose components have continuous partial derivatives on an open region in ℜ3 that
contains S.

∫

C

F · dr =
∫∫

S

curl F · dS

14. Use Stokes’ Theorem to find

∫

C

F · dr where F = 〈z2, y2, xy〉 where C is the boundary of the plane

2x+ y + 2z = 2 in the firsrt octant. Orient C to be counterclockwise when looking from above.



15. Use Stokes’ Theorem to find

∫

C

F · dr where F = 〈z2, 2x, y2〉 and C is the curve of intersection of the

plane y + z = 2 and the cylinder x2 + y2 = 1. Orient C to be counterclockwise when looking from
above (which ensures the normal vector points upward).

16. Use Stokes’ Theorem to find
∫∫

S

curl F · dS where F = 〈x2 sin z, y2, xy〉 and S is the part of the

paraboliod z = 1− x2 − y2 that lies above the xy plane, oriented upward.

A surface integral over a closed surface can be evaluated as a triple integral over the volume enclosed
by the surface.

Divergence Theorem Let E be a simple solid region whose boundary surface has positive (outward)
orientation. Let F be a vector field whose component functions have continuous partial derivatives
on an open region that contains E. Then

∫∫

S

F · dS =

∫∫∫

E

div FdV

17. Use the Divergence Theorem to evaluate

∫∫

S

F · dS where F = 〈x+ sin z, 2y + cos x, 3z + tan y〉 over

the sphere x2 + y2 + z2 = 4.

18. Let S be the surface of the solid bounded by the paraboloid z = 4 − x2 − y2 and the xy-plane. Use

the Divergence Theorem to evaluate

∫∫

S

F · dS, where F = 〈x3, 2xz2, 3y2z〉.

19. Using the Divergence Theorem, find the flux of the vector field F = 〈z cos y, x sin z, xz〉 where S is
the tetrahendron bounded by the planes x = 0, y = 0, z = 0, and 2x+ y + z = 2.


