1. Find the linear approximation, \(L(x) \), for \(f(x) = \sqrt{x} \) at \(x = 9 \). Using this linear approximation, which of the following is an estimate for \(\sqrt{11} \)?

\[a) \frac{8}{3} \quad b) \frac{11}{3} \quad c) \frac{23}{6} \quad d) \frac{21}{6} \quad e) \frac{10}{3} \]

Linear approximation of \(f(x) \) at \(x = a \):

\[
L(x) = f(a) + f'(a)(x-a)
\]

\[
= f(9) + f'(9)(x-9)
\]

\[
L(x) = 3 + \frac{1}{6}(x-9) \approx \sqrt{x} \quad \text{for} \ x \ \text{near} \ 9
\]

\[
3 + \frac{1}{6}(11-9) \approx \sqrt{11}
\]

\[
3 + \frac{1}{3} = \frac{10}{3}
\]

2. If \(f(x) = 3x \cos^2(x^2) \), find \(f'(0) \).

\[a) \ 0 \quad b) -3 \quad c) 3 \quad d) 1 \quad e) -9 \]

\[
f(x) = 3x \cos^2(x^2)
\]

\[
f'(x) = \frac{d}{dx} \left(3x \cos^2(x^2) \right)
\]

\[
= 3 \cos^2(x^2) + 3x \left(2 \cos(x^2) \left(-\sin(x^2) \right) \right)
\]

\[
f'(0) = 3
\]
3. A particle is moving according to the equation of motion \(f(t) = t^4 - 4t + 1 \), where \(t \geq 0 \), where \(t \) is measured in seconds and \(f(t) \) is measured in feet. What is the acceleration of the particle at the instant when the particle is at rest?

a) \(\frac{0{ft}}{s^2} \)

b) \(\frac{0{ft}}{s} \)

c) \(12\frac{ft}{s^2} \)

d) \(12\frac{ft}{s} \)

e) \(-12\frac{ft}{s^2} \)

\[v(t) = f'(x) = 4t^3 - 4 \]

\[v(t) = 0 \quad \text{when} \quad t = 1 \]

\[a(t) = f''(t) = v'(t) = 12t^2 \]

\[a(1) = 12 \quad \text{ft/sec/sec} = \text{ft/sec}^2 \]

4. Two sides of a triangle are fixed at 4cm and 6cm and the angle between them is increasing at a rate of .02 radians per second. How fast is the area of the triangle increasing when the angle between them is \(\frac{\pi}{6} \)?

\[a = \frac{.12}{\sqrt{3}} \]

b) \(\frac{.02}{6} \)

c) \(\frac{.02}{6\sqrt{3}} \)

d) .12

e) 12\sin(.02)

\[\text{given:} \quad \frac{d\theta}{dt} = 0.02 \quad \frac{\text{radians}}{\text{sec}} \]

\[\text{Find} \quad \frac{dA}{dt} \]

\[A = \frac{1}{2}bh = \frac{1}{2}(6)(4\sin\theta) \]

\[A = 12\sin\theta \]

\[\frac{dA}{dt} = 12\cos\theta \frac{d\theta}{dt} \]

\[\frac{dA}{dt} = 12\left(\frac{\sqrt{3}}{2} \right)(0.02) \text{ cm}^2/\text{sec} \]
5. Let \(f(x) = (1 + x^2)^{\frac{3}{2}} \). Then \(f''(0) = \)

a) 3
b) 0
c) 6
d) \(\frac{3}{4\sqrt{2}} \)
e) \(\frac{3}{4} \)

\[
\begin{align*}
 f'(x) &= \frac{3}{2} (1 + x^2)^{\frac{1}{2}} \cdot (2x) \\
 f''(x) &= \frac{3}{2} \frac{3(1 + x^2)}{(x)} \cdot \frac{1}{x} \\
 f''(x) &= g'h + gh' \\
 f''(x) &= \frac{3}{2} \frac{(1 + x^2)}{(x)} \cdot (2x) \cdot (x) + \frac{3(1 + x^2)}{(x)} \cdot (1) \\
 f''(0) &= 3
\end{align*}
\]

6. The function \(f(x) = x^3 + 5x - 1 \) is one-to-one. Let \(g = f^{-1} \). Then \(g'(5) = \)

a) 8
b) \(\frac{1}{80} \)
c) \(\frac{8}{25} \)
d) \(\frac{1}{8} \)
e) 80

\[
\begin{align*}
 f(x) &= x^3 + 5x - 1 \\
 f'(x) &= 3x^2 + 5 \\
 f'(1) &= 8
\end{align*}
\]

\[
\begin{align*}
 g'(a) &= \frac{1}{f'(g(a))} \\
 g'(5) &= \frac{1}{f'(g(5))} \\
 \quad a = 5 \\
 \text{What is } g(5) \text{?} \\
 \text{solve } f(x) &= 5 \\
 x^3 + 5x - 1 &= 5 \\
 x &= 1 \implies g(5) = 1
\end{align*}
\]
7. Given the curve parametrized by $x = t^3 - 3t^2 - 9t + 1$, $y = t^3 + 3t^2 - 9t + 1$, at which point does the curve have a vertical tangent?

a) $(1, -3)$
b) $(6, 12)$
c) $(-10, 6)$
d) $(-1, 3)$
e) $(1, 1)$

The slope of a parametric curve at $t = a$ is

$$m = \frac{dy/dt}{dx/dt} \bigg|_{t=a}$$

$$x = t^3 - 3t^2 - 9t + 1$$
$$y = t^3 + 3t^2 - 9t + 1$$

$$t = -1 \quad \begin{cases} x = -1 - 3 + 9 + 1 = 6 \\ y = -1 + 3 + 9 + 1 = 12 \end{cases}$$

$$t = 3 \quad \begin{cases} x = 27 - 27 - 27 + 1 = -26 \\ y = 27 + 27 - 27 + 1 = 28 \end{cases}$$

Solve $\frac{dx}{dt} = 0$:

$$3t^2 - 6t - 9 = 0$$
$$3(t^2 - 2t - 3) = 0$$
$$3(t - 3)(t + 1) = 0$$

Solution: $(6, 12) \pm (-26, 28)$

Only b is correct answer.

8. \[\lim_{x \to 0} \frac{4 \cos x - 4 + 3 \sin x}{3x} = \]

a) $\frac{4}{3}$
b) $-\frac{4}{3}$
c) $\frac{3}{5}$
d) 1
e) 0

\[\lim_{x \to 0} \frac{\sin \theta}{\theta} = 1 \quad \text{and} \quad \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0 \]

\[\lim_{x \to 0} \left(\frac{4 \cos x - 4}{5x} + \frac{3 \sin x}{5x} \right) = \frac{1}{5} \lim_{x \to 0} \left(\frac{4(\cos x - 1)}{x} + \frac{3 \sin x}{x} \right) \]

\[= \frac{1}{5} (0 + 3) \]

\[= \frac{3}{5} \]
9. Find the slope of the line tangent to the curve given by \(y^2 + xy = 8 \) at the point \((-2, -2)\).

 a) \(-2\)
 b) \(-\frac{10}{3}\)
 c) \(-\frac{1}{3}\)
 d) \(-3\)
 e) 0

\[y^2 + xy = 8 \]
Implicit diff:

\[ay \frac{dy}{dx} + (1)y + x \frac{dy}{dx} = 0 \]

\[\frac{dy}{dx} = \frac{-y}{2y + x} \]

\[m = \frac{-(-2)}{2(-2) - 2} = \frac{2}{-4 - 2} = \frac{-1}{3} \]

10. Which of the following statements is true about the curve \((2 + \cos t)i + (1 + \sin t)j\)?

 a) Clockwise movement around the circle \((x - 2)^2 + (y - 1)^2 = 1\)

 b) Counterclockwise movement around the circle \((x - 2)^2 + (y - 1)^2 = 1\)

 c) Clockwise movement around the ellipse \(x^2/4 + y^2 = 1\)

 d) Counterclockwise movement around the ellipse \(x^2/4 + y^2 = 1\)

 e) None of the above statements is correct.

\[\begin{align*}
 x &= 2 + \cos t \quad \Rightarrow \quad \cos t = x - 2 \\
 y &= 1 + \sin t \quad \Rightarrow \quad \sin t = y - 1 \\
 \cos^2 t + \sin^2 t &= 1 \\
 (x - 2)^2 + (y - 1)^2 &= 1 \\
 t &= 0 \quad \Rightarrow \quad x = 3 \\
 y &= 1
\end{align*} \]
11. Let \(f(x) \) be a differentiable function and let \(g(x) = 3x^2 - 1 \). Let \(H(x) = f(g(x)) \), the composite of \(f \) and \(g \). If \(f(0) = 1, f'(0) = -1, f(1) = 3, f'(1) = 2, f(2) = -1, f'(2) = 5 \), find \(H'(1) \).

\[H(x) = f(g(x)) \]

\[H(x) = f(3x^2 - 1) \]

Find \(H'(1) \)

by chain rule,

\[H'(x) = f'(3x^2 - 1)(6x) \]

\[H'(1) = f'(2)(6) \]

\[H'(1) = 5(6) = 30 \]

\[12. \lim_{x \to \infty} 3^{1-x} = \]

a) 0 \hspace{2cm} b) \infty \hspace{2cm} c) -\infty \hspace{2cm} d) 1 \hspace{2cm} e) 3

\[\lim_{x \to \infty} 3^{1-x} = \]

\[\lim_{x \to \infty} (1-x) \]

\[\lim_{x \to \infty} 3 = \frac{1}{3^\infty} = 0 \]
13. Find the inverse of \(f(x) = \frac{3x - 5}{7x + 2} \)

a) \(f^{-1}(x) = \frac{7x + 2}{3x - 5} \)

b) \(f^{-1}(x) = \frac{2x - 5}{3x + 7} \)

c) \(f^{-1}(x) = \frac{2x + 5}{7x + 3} \)

d) \(f^{-1}(x) = \frac{7x + 2}{3x - 5} \)

e) None of the above is correct.

\[
\begin{align*}
\text{Let } y &= \frac{3x - 5}{7x + 2} \\
x &= \frac{3y - 5}{7y + 2} \\
x(7y + 2) &= 3y - 5 \\
7xy + 2x &= 3y - 5 \\
2x + 5 &= 3y - 7xy \\
2x + 5 &= y(3 - 7x) \\
y &= \frac{2x + 5}{3 - 7x}
\end{align*}
\]

14. If \((\cos 3t, t) \) is the position of an object at time \(t \), find the acceleration of the object at time \(t = \frac{\pi}{9} \).

a) \(\left\langle \frac{1}{2}, 0 \right\rangle \)

b) \(\left\langle -\frac{1}{2}, 0 \right\rangle \)

c) \(\left\langle -\frac{9}{2}, 0 \right\rangle \)

d) \(\left\langle \frac{9}{2}, 0 \right\rangle \)

e) \((3, 0) \)

\[
\begin{align*}
\mathbf{r}(t) &= \langle \cos(3t), t \rangle \\
\mathbf{v}(t) &= \langle -3 \sin(3t), 1 \rangle \\
\mathbf{a}(t) &= \langle -9 \cos(3t), 0 \rangle \\
\mathbf{a}\left(\frac{\pi}{9}\right) &= \langle -9 \cos\left(\frac{\pi}{3}\right), 0 \rangle \\
&= \langle -9 \cdot \frac{1}{2}, 0 \rangle
\end{align*}
\]
15. If $f(x) = e^{x \tan x}$, find $f'(x)$.

a) $f'(x) = e^{x \tan x}$

b) $f'(x) = \sec^2 x e^{x \tan x}$

c) $f'(x) = (\tan x + x \sec^2 x) e^{x \tan x}$

d) $f'(x) = (\tan x + x \sec x \tan x) e^{x \tan x}$

e) $f'(x) = x \tan x e^{x \tan x - 1}$

16. Find the equation of the tangent line to the graph of $x = e^{2t}$, $y = te^t$ at the point $(1,0)$.

a) $y = 2x - 1$

b) $y = 4x - 4$

c) $y = \frac{1}{2}x - \frac{1}{2}$

d) $y = \frac{1}{3}x - \frac{1}{3}$

e) $y = x - 1$
17. Find the quadratic approximation for \(f(x) = \frac{1}{x} \) at \(x = 1 \).

 a) \(x^2 - 3x + 3 \)
 b) \(x^2 - x + 2 \)
 c) \(x^2 - 2x + 1 \)
 d) \(x^2 + 4x + 5 \)
 e) \(x^2 + x - 3 \)

\[
\Theta(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2
\]

\[
\Theta(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2}(x-1)^2
\]

\[
f = \frac{1}{x}
\]

\[
f' = \frac{-1}{x^2}
\]

\[
f'' = \frac{2}{x^3}
\]

\[
\Theta(x) = 1 - (x-1) + (x-1)^3
\]

\[= 1 - x + 1 + x^2 - 2x + 1
\]

\[= x^2 - 3x + 3
\]

18. The position of a particle is given by \(\mathbf{r}(t) = \left(\frac{\cos t}{e^t}, \frac{\sin t}{e^t} \right) \). Find the velocity and speed of the particle when \(t = 0 \).

\[
\mathbf{r}(t) = \left(\frac{\cos t}{e^t}, \frac{\sin t}{e^t} \right) = \left(e^{-t}\cos t, e^{-t}\sin t \right)
\]

\[
\mathbf{v}(t) = \left(-e^{-t}\cos t + e^{-t}(-\sin t), -e^{-t}\sin t + e^{-t}\cos t \right)
\]

\[
\mathbf{v}(0) = \left(-1, 1 \right) \text{ velocity, speed} = \left| \left(-1, 1 \right) \right|
\]

\[= \sqrt{(-1)^2 + (1)^2}
\]

\[= \sqrt{2}
\]
19. The radius of a sphere was given to be 8 inches with a maximum possible error in measurement of 0.01 inches. Find the differential \(dV \), and use it to estimate the maximum error in the calculated volume of the sphere.

\[
\text{def: } y = f(x) \Rightarrow \frac{dy}{dx} = f'(x)
\]

\[
\Delta V = V(8.01) - V(8) \\
dV \approx \Delta V
\]

\[
v = \frac{4}{3} \pi r^3
\]

\[
\frac{dv}{dr} = \frac{4}{3} \pi (3r^2)
\]

\[
\frac{dv}{dr} = 4\pi r^2 \Rightarrow dv = 4\pi r^2 dr
\]

\[
= 4\pi (64)(0.01) \text{ in}^3
\]
20. Find all values of x between 0 and 2π where the tangent line to $f(x) = 2x - \tan x$ is horizontal.

\[
\text{solve } \quad f'(x) = 0 \\
2 - \sec^2 x = 0 \\
\sec^2 x = 2 \\
\sec x = \pm \sqrt{2} \Rightarrow \cos x = \pm \frac{1}{\sqrt{2}} \\
\boxed{x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}} \quad \cos x = \pm \frac{\sqrt{2}}{2}
\]
21. A trough is 20 feet long. The end of the trough is an isosceles triangle with height 10 feet and length of 3 feet across the top. If water is poured in the trough at a rate of 3 cubic feet per minute, how fast is the water level rising when the height of the water is 1 foot?

\[
\frac{b}{h} = \frac{3}{10}
\]

Find \(\frac{dh}{dt} \) when \(h = 1 \) foot.

\[
V = \left(\text{Area triangle} \right) \times \text{(length)}
\]

\[
V = \left(\frac{1}{2} bh \right) (20) = 10bh
\]

\[
V = 10bh
\]

\[
v = 10 \left(\frac{3}{10} h \right) h
\]

\[
v = 3h^2
\]

\[
\frac{dv}{dt} = 6h \frac{dh}{dt}
\]

\[
3 = 6(1) \frac{dh}{dt}
\]

\[
\frac{dh}{dt} = \frac{1}{2} \frac{f}{m}
\]
22. Find the derivative of the following functions:

a.) \(f(x) = \cos^3(\tan(x)) \)

b.) \(h(x) = \frac{x^3}{(5x + 8)^2} \)

\[
f'(x) = 3(\cos(\tan(x)))^2 \cdot (-\sin(\tan(x)) \sec^2 x)
\]

\[
h'(x) = \frac{3x^2(5x + 8) - 7x^3}{9(5x + 8)^2} + \frac{x^3[-7(5x + 8)]}{9(5x + 8)^2}
\]
23. Given the equation \(2e^{xy} = x + y\), find \(\frac{dy}{dx}\) when \(x = 0\) and \(y = 2\).

\[
\text{Find } \frac{dy}{dx} : \quad 2e^{xy} = 1 + \frac{dy}{dx}
\]

\[
2 \left(y + x \frac{dy}{dx} \right) e^{xy} = 1 + \frac{dy}{dx}
\]

\[
2 \left(\frac{dy}{dx} + 0 \right) e^{xy} = 1 + \frac{dy}{dx}
\]

\[
4 = 1 + \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = 3
\]
24. Find the points where the tangent line to the curve \(y = x^2 + x \) pass through the point (2, -3).

\[f(x) = x^2 + x = x(x + 1) \]

\[f'(x) = 0 \]
\[2x + 1 = 0 \]
\[x = -\frac{1}{2} \]
\[y = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \]

Wrong: \(m = \frac{dy}{dx} \bigg|_{x=2} \) not right because \((2, -3)\) is not on the parabola.

Since line is tangent to
\[f(x) = x^2 + x + a^2 \]
\[x = a, m = f'(a) \]
\[f'(x) = 2x + 1 \]
\[f'(a) = 2a + 1 \]

solve
\[\frac{a^2 + a + 3}{a - 2} = 2a + 1 \]

\[a^2 + a + 3 = (2a + 1)(a - 2) \]
\[a^2 + a + 3 = 2a^2 - 3a - 2 \]
\[0 = a^2 - 4a - 5 \]
\[= (a - 5)(a + 1) \]

Points: \[f(x) = x^2 + x \]
\[(5, 30), (-1, 0) \]
25. A rope is attached to the bow of a boat coming in for the evening. Assume the rope is drawn in over a pulley 5 feet higher than the bow at a rate of 2 feet per second. How fast is the boat docking when the length of the rope from the bow to the pulley is 13 feet?

\[r^2 = b^2 + 25 \]
\[a \frac{dr}{dt} = b \frac{db}{dt} \]

Given: \(\frac{dr}{dt} = -2 \frac{f}{s} \)

Find \(\frac{db}{dt} \) \(\left| r = 13 \right| \Rightarrow 13 = b^2 + 25 \)

\[169 - 25 = b^2 \]
\[144 = b^2 \]
\[12 = b \]

\[(13)(-2) = 12 \frac{db}{dt} \Rightarrow \frac{db}{dt} = -\frac{26}{12} \frac{f}{s} \]

Docking at a rate of \(\frac{26}{12} \frac{f}{s} \)
Find the \(102^{nd}\) derivative of \(f(x) = \frac{1}{x^2}\)

\[
\begin{align*}
f(x) &= \frac{1}{x^2} \\
f'(x) &= -2x^{-3} \\
f''(x) &= -6x^{-4} \\
f'''(x) &= 24x^{-5} \\
f^{(4)}(x) &= -120x^{-6} \\
\vdots \\
f^{(102)}(x) &= (-1)^{102}(103)!x^{-104} \\
f^{(103)}(x) &= \frac{(-1)^{103}(104)!x^{-105}}{104!} \\
\end{align*}
\]