Section 4.8: L’Hospital’s Rule

Indeterminate form: If \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \(\frac{\infty}{\infty} \), then we say the limit is in indeterminate form.

L’Hospital’s Rule: If \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \(\frac{\infty}{\infty} \), then \(\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \).

Some common misconceptions: If \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\infty}{0} \), the limit is NOT indeterminate! For example,

(i) \(\lim_{x \to 0^+} \frac{\ln x}{\sqrt{x}} \)

(ii) \(\lim_{x \to 0^+} \frac{x}{\ln x} \)

Example 1: Find the following limits, if they exist. If the limit does not exist, explain why.

(i) \(\lim_{x \to 1} \frac{\ln x}{x - 1} \)

(ii) \(\lim_{x \to 0} \frac{\sin x - x}{x^3} \)

(iii) \(\lim_{x \to 0} \frac{\sin mx}{\sin nx} \)
(iv) \[\lim_{x \to \infty} \frac{(\ln x)^2}{x} \]

Indeterminate Products: If \(\lim_{x \to a} f(x)g(x) = 0 \cdot \infty \), this limit is an indeterminate product. Why do we call the product indeterminate?

\[
\begin{align*}
\lim_{x \to \infty} \frac{1}{x^2} \cdot x &= \lim_{x \to \infty} \frac{1}{x} \cdot x^2 &= \lim_{x \to \infty} \frac{1}{x^2} \cdot 6x^2
\end{align*}
\]

All three of these limits are of the form \(0 \cdot \infty \), yet they all have different limits. The goal is to try to manipulate the product to get the limit in the form \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \), then use L'Hospital’s rule.

Example 2: Find the following limits, if they exist. If the limit does not exist, explain why.

(i) \(\lim_{x \to 0^+} x^3 \ln x \)

(ii) \(\lim_{x \to 1^+} (x - 1) \tan(\pi x/2) \)
Indeterminate Powers: If $\lim_{x \to a} f(x)^{g(x)}$ is of the form 0^0, ∞^0 or 1^∞, then the limit is an indeterminate power. To solve such a limit, take the natural logarithm, which converts the indeterminate power into an indeterminate product.

Example 3: Find the following limits, if they exist. If the limit does not exist, explain why.

(i) $\lim_{x \to \infty} x^{\frac{3}{x}}$

(ii) $\lim_{x \to \infty} \left(\frac{2x - 3}{2x + 5} \right)^{2x+1}$

Indeterminate difference: If $\lim_{x \to a} (f(x) - g(x)) = \infty - \infty$, this limit is an indeterminate difference.

Example 4: Find $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$