Summer 2005

STEPS: Review of Pre-Calculus
courtesy: Amy Austin

Domain

1. Find the domain of the following functions. Enter your answer both as an inequality and in interval notation.
a.) $f(x)=x^{3}+3 x^{2}+1$
b.) $f(x)=\frac{1}{x}$
c.) $f(x)=\frac{x+1}{x^{2}-2 x-3}$
d.) $f(x)=\sqrt{x}$
e.) $f(x)=\sqrt[4]{2-3 x}$
f.) $f(x)=\sqrt{x^{2}-3 x-4}$
g.) $f(x)=\sqrt{\frac{x}{x-2}}$
h.) $f(x)=\frac{\sqrt{x+2}}{x^{2}-x-20}$
i.) $f(x)=\frac{\sqrt[3]{x+2}}{x^{2}+1}$

Computations

2. For $f(x)=x^{3}-2 x+1$, find $f(3), f(a+1)$ and $f(x+h)$.
3. For $f(x)=x^{2}+x+56$, find and simplify $\frac{f(x+h)-f(x)}{h}$.
4. For $f(x)=3-4 \sqrt{x+1}$, find and simplify $\frac{f(x+h)-f(x)}{h}$.
5. If $f(x)=\sqrt{x-3}$ and $g(x)=x^{2}+2$, find $f \circ g, g \circ f$ and their domains.

Linear and Quadratic Functions

6 . Find the equation of the line passing through the points $(2,3)$ and $(-5,7)$. Express your answer in the form $y=m x+b$.
7. As dry air moves upward, it expands and cools. If the ground temperature is $26^{\circ} \mathrm{C}$ and the temperature at a height of 2 km is $15^{\circ} \mathrm{C}$, express the temperature T as a function of the height h, assuming
a linear model is appropriate. What is the temperature at a height of 3.5 km ?
8. Graph the quadratic $f(x)=x^{2}-4 x-12$. Identify the vertex and intercept(s).
9. Graph the quadratic $f(x)=-x^{2}+4 x-5$. Identify the vertex and intercept(s).
10. Sketch the region bounded by the curves $y=9-x^{2}$ and $y=2 x+1$.

Piece-wise defined functions

11. Sketch the graph of

$$
f(x)= \begin{cases}2 x+1 & \text { if } x<-1 \\ 7 & \text { if } x=-1 \\ 9-x^{2} & \text { if } x>-1\end{cases}
$$

12. Write the following as a piece-wise defined function:

13. Write the following absolute value functions as piece-wise defined functions. Sketch the graph.
a.) $f(x)=|x|$
b.) $f(x)=|2 x-5|$
c.) $f(x)=\left|x^{2}-2 x-3\right|$
d.) $f(x)=x+4|x|+1$

Solving Inequalities

14. Solve $|x+1|<8$
15. Solve $|2 x-1|>4$
16. Solve $\left|\frac{x+1}{3 x-4}\right|=2$
17. Solve $\frac{x+4}{x+7} \leq 2$
18. Solve $x^{2}-2 x \leq 3$

Factoring

19. Factor the following expressions completely.
a.) $x^{2}-64$
b.) $3 x-x^{3}$
c.) $1-4 x^{4}$
d.) $x^{2}+2 x-3$
e.) $x^{3}-1$
f.) $x^{3}+216$
g.) $x^{4}-\frac{81}{16}$

Simplifying Rational Expressions

20. Simplify the following rational expressions completly.
a.) $\frac{25-x^{2}}{x-5}$
b.) $\frac{4}{x}-\frac{2}{x^{2}}$
c.) $\frac{1}{x+3}+\frac{3}{x+2}$
d.) $\frac{\frac{1}{x}+1}{\frac{1}{x}-1}$
e.) $\frac{\frac{3}{(x+h)^{2}}-\frac{3}{x^{2}}}{h}$

Solving equations

21. Solve for x :
a.) $4 x-11=3 x+1$
b.) $(2 x-1)(4 x-3)=(8 x-1)(x+2)$
c.) $(x-2)^{4}=16$
d.) $(x+1)^{3}=-8$
e.) $\frac{x+3}{5}=\frac{2-x}{7}$
f.) $\frac{2 x+5}{x+1}=\frac{3}{4}$
g.) $1-\frac{3}{x+1}=-5$
h.) $\frac{3 x}{x-2}=1+\frac{6}{x-2}$

Trigonometry

22. Convert 34° to radians.
23. Convert $\frac{\pi}{15}$ radians to degrees.
24. If the radius of a circle is 5 inches, what is the length of an arc subtended by a central angle of 60° ?
25. If $\sin (\theta)=\frac{4}{5}$, and $0 \leq \theta \leq \frac{\pi}{2}$ find $\cos (\theta)$, $\tan (\theta), \sec (\theta), \csc (\theta)$, and $\cot (\theta)$.
26. If $\csc (\theta)=-\frac{4}{3}$, and $\frac{3 \pi}{2} \leq \theta \leq 2 \pi$, find $\sin (\theta)$, $\cos (\theta), \sec (\theta), \tan (\theta)$, and $\cot (\theta)$.
27. Refer to the figure to find the value of x, given that $\alpha=20^{\circ}$.

28. It is imperative that you know the value of all six trig functions evaluated at $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° BY HEART! If you know these, then you can easily count around the unit circle to obtain, say, $\sin \left(150^{\circ}\right)$ by using a reference angle. The reference angle is by definition the smallest angle made with the x axis. Now I will do streaming video of how this is done.
29. Solve the following equations for x :
a.) $2 \cos (x)=1$ in the interval $[0,2 \pi]$
b.) $2 \cos ^{2} x=1$ in the interval $[-\pi, \pi]$
c.) $\sin (2 x)=\cos x$ in the interval $[0,3 \pi]$.
