Summer 2005

STEPS: Review of Pre-Calculus

courtesy: Amy Austin

<u>Domain</u>

1. Find the domain of the following functions. Enter your answer both as an inequality and in interval notation.

a.)
$$f(x) = x^3 + 3x^2 + 1$$

b.) $f(x) = \frac{1}{x}$
c.) $f(x) = \frac{x+1}{x^2 - 2x - 3}$
d.) $f(x) = \sqrt{x}$
e.) $f(x) = \sqrt{x}$
f.) $f(x) = \sqrt{x^2 - 3x - 4}$
g.) $f(x) = \sqrt{\frac{x}{x - 2}}$
h.) $f(x) = \frac{\sqrt{x + 2}}{x^2 - x - 20}$
i.) $f(x) = \frac{\sqrt[3]{x + 2}}{x^2 + 1}$

Computations

- 2. For $f(x) = x^3 2x + 1$, find f(3), f(a + 1) and f(x + h).
- 3. For $f(x) = x^2 + x + 56$, find and simplify $\frac{f(x+h) f(x)}{h}$.
- 4. For $f(x) = 3 4\sqrt{x+1}$, find and simplify $\frac{f(x+h) f(x)}{h}$.
- 5. If $f(x) = \sqrt{x-3}$ and $g(x) = x^2 + 2$, find $f \circ g$, $g \circ f$ and their domains.

Linear and Quadratic Functions

- 6. Find the equation of the line passing through the points (2,3) and (-5,7). Express your answer in the form y = mx + b.
- 7. As dry air moves upward, it expands and cools. If the ground temperature is 26° C and the temperature at a height of 2 km is 15° C, express the temperature T as a function of the height h, assuming

a linear model is appropriate. What is the temperature at a height of 3.5 km?

- 8. Graph the quadratic $f(x) = x^2 4x 12$. Identify the vertex and intercept(s).
- 9. Graph the quadratic $f(x) = -x^2 + 4x 5$. Identify the vertex and intercept(s).
- 10. Sketch the region bounded by the curves $y = 9 x^2$ and y = 2x + 1.

Piece-wise defined functions

11. Sketch the graph of

$$f(x) = \begin{cases} 2x+1 & \text{if } x < -1 \\ 7 & \text{if } x = -1 \\ 9-x^2 & \text{if } x > -1 \end{cases}$$

12. Write the following as a piece-wise defined function:

- 13. Write the following absolute value functions as piece-wise defined functions. Sketch the graph.
 - a.) f(x) = |x|b.) f(x) = |2x - 5|c.) $f(x) = |x^2 - 2x - 3|$ d.) f(x) = x + 4|x| + 1

Solving Inequalities

14. Solve |x + 1| < 815. Solve |2x - 1| > 416. Solve $\left|\frac{x + 1}{3x - 4}\right| = 2$ 17. Solve $\frac{x + 4}{x + 7} \le 2$ 18. Solve $x^2 - 2x \le 3$

Factoring

- 19. Factor the following expressions completely.
 - a.) $x^2 64$
 - b.) $3x x^3$
 - c.) $1 4x^4$
 - d.) $x^2 + 2x 3$
 - e.) $x^3 1$
 - f.) $x^3 + 216$
 - g.) $x^4 \frac{81}{16}$

Simplifying Rational Expressions

20. Simplify the following rational expressions completly.

a.)
$$\frac{25 - x^2}{x - 5}$$

b.) $\frac{4}{x} - \frac{2}{x^2}$
c.) $\frac{1}{x + 3} + \frac{3}{x + 2}$
d.) $\frac{\frac{1}{x} + 1}{\frac{1}{x} - 1}$
e.) $\frac{\frac{3}{(x+h)^2} - \frac{3}{x^2}}{h}$

Solving equations

- 21. Solve for x:
 - a.) 4x 11 = 3x + 1b.) (2x - 1)(4x - 3) = (8x - 1)(x + 2)c.) $(x - 2)^4 = 16$ d.) $(x + 1)^3 = -8$ e.) $\frac{x + 3}{5} = \frac{2 - x}{7}$ f.) $\frac{2x + 5}{x + 1} = \frac{3}{4}$ g.) $1 - \frac{3}{x + 1} = -5$ h.) $\frac{3x}{x - 2} = 1 + \frac{6}{x - 2}$

Trigonometry

- 22. Convert 34° to radians.
- 23. Convert $\frac{\pi}{15}$ radians to degrees.
- 24. If the radius of a circle is 5 inches, what is the length of an arc subtended by a central angle of 60° ?
- 25. If $\sin(\theta) = \frac{4}{5}$, and $0 \le \theta \le \frac{\pi}{2}$ find $\cos(\theta)$, $\tan(\theta), \sec(\theta), \csc(\theta)$, and $\cot(\theta)$.
- 26. If $\csc(\theta) = -\frac{4}{3}$, and $\frac{3\pi}{2} \le \theta \le 2\pi$, find $\sin(\theta)$, $\cos(\theta)$, $\sec(\theta)$, $\tan(\theta)$, and $\cot(\theta)$.
- 27. Refer to the figure to find the value of x, given that $\alpha = 20^{\circ}$.

- 28. It is imperative that you know the value of all six trig functions evaluated at 0° , 30° , 45° , 60° , and 90° BY HEART! If you know these, then you can easily count around the unit circle to obtain, say, $\sin(150^{\circ})$ by using a reference angle. The reference angle is by definition the smallest angle made with the x axis. Now I will do streaming video of how this is done.
- 29. Solve the following equations for x:
 - a.) $2\cos(x) = 1$ in the interval $[0, 2\pi]$
 - b.) $2\cos^2 x = 1$ in the interval $[-\pi, \pi]$
 - c.) $\sin(2x) = \cos x$ in the interval $[0, 3\pi]$.