## Examination 2

1. Suppose $f$ is a holomorphic function in the right-hand half-plane such that $f^{\prime}(z)=1 / z$ when $\operatorname{Re}(z)>0$, and $f(1)=i$. Find the value of $f(1+i)$ in the form $a+b i$.
2. Suppose $f$ has an isolated singularity at 0 , and the residue of $f$ at 0 is equal to 4 . Suppose $g(z)=f(2 z)+3 f(z)$ for all $z$ in a punctured neighborhood of 0 . Find the residue of $g$ at 0 .
3. Suppose $\gamma_{0}:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a differentiable closed curve lying in the punctured plane, and $\gamma_{1}(t)=\gamma_{0}\left(t^{2}\right)$ when $0 \leq t \leq 1$. If the index (winding number) of $\gamma_{0}$ about the origin is equal to 5 , what is the value of the index of $\gamma_{1}$ about the origin? Explain how you know.
4. Find the maximum value of $\left|i+z^{2}\right|$ when $|z| \leq 2$.
5. Prove that $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{2 \sqrt{2}}$.
(This integral can-in principle-be evaluated by using techniques of real calculus, but you are more likely to be successful by applying the residue theorem.)
6. Let $V$ denote an open subset of $\mathbb{C}$, let $\gamma$ denote a differentiable simple closed curve that lies in $V$, and let $f$ denote a holomorphic function in $V$. Answer any two of the following three questions.
(a) What additional property of $\gamma$ is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every $f$ ?
(b) What additional property of $f$ is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every $\gamma$ ?
(c) What additional property of $V$ is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every $f$ and every $\gamma$ ?
