Examination 2

1. Suppose f is a holomorphic function in the right-hand half-plane such that $f^{\prime}(z)=1 / z$ when $\operatorname{Re}(z)>0$, and $f(1)=i$. Find the value of $f(1+i)$ in the form $a+b i$.

Solution. One function whose derivative equals $1 / z$ is the principal branch of the logarithm. Two functions having the same derivative (on a connected open set) differ by a constant, so there is some complex number c such that $f(z)=c+\log (z)$. Since $f(1)=i$, and $\log (1)=0$, the constant c is equal to i. Then $f(1+i)=i+\log (1+i)=i+\ln (\sqrt{2})+\frac{\pi}{4} i=\frac{1}{2} \ln 2+\left(1+\frac{\pi}{4}\right) i$.
2. Suppose f has an isolated singularity at 0 , and the residue of f at 0 is equal to 4 . Suppose $g(z)=f(2 z)+3 f(z)$ for all z in a punctured neighborhood of 0 . Find the residue of g at 0 .

Solution.

Method 1 By hypothesis, there are coefficient sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that the Laurent series for f has the following form:

$$
\sum_{n=-\infty}^{-2} a_{n} z^{n}+\frac{4}{z}+\sum_{n=0}^{\infty} b_{n} z^{n}
$$

The transformation $z \mapsto 2 z$ (in the domain) and the transformation $w \mapsto 3 w$ (in the range) map each monomial z^{n} to a multiple of the same monomial, so there are coefficient sequences $\left(\widetilde{a}_{n}\right)$ and $\left(\widetilde{b}_{n}\right)$ such that the Laurent series of g has the form

$$
\sum_{n=-\infty}^{-2} \widetilde{a}_{n} z^{n}+\frac{4}{2 z}+3 \cdot \frac{4}{z}+\sum_{n=0}^{\infty} \widetilde{b}_{n} z^{n}
$$

[Explicit values for the coefficients are easy to find: namely, $\widetilde{a}_{n}=\left(2^{n}+3\right) a_{n}$, and $\widetilde{b}_{n}=\left(2^{n}+3\right) b_{n}$.] Therefore the residue of g at 0 equals $\frac{4}{2}+3 \cdot 4$, or 14 .
Method 2 There is a positive radius r such that f is holomorphic at least in the punctured disk of radius $3 r$ centered at 0 . The residue of f at 0 equals $(2 \pi i)^{-1}$ times the integral of f around an arbitrary counterclockwise circle centered at 0 of radius less than $3 r$, so

$$
\operatorname{Res}(f, 0)=\frac{1}{2 \pi i} \oint_{|z|=r} f(z) d z=\frac{1}{2 \pi i} \oint_{|z|=2 r} f(z) d z
$$

Examination 2

Similarly,

$$
\begin{aligned}
\operatorname{Res}(g, 0) & =\frac{1}{2 \pi i} \oint_{|z|=r} g(z) d z=\frac{1}{2 \pi i} \oint_{|z|=r}(f(2 z)+3 f(z)) d z \\
& =\frac{1}{2 \pi i} \oint_{|z|=r} f(2 z) d z+3 \operatorname{Res}(f, 0)
\end{aligned}
$$

The remaining integral can be computed by replacing $2 z$ with a new variable w as follows:

$$
\frac{1}{2 \pi i} \oint_{|z|=r} f(2 z) d z=\frac{1}{2 \pi i} \oint_{|w|=2 r} f(w) \frac{d w}{2}=\frac{1}{2} \operatorname{Res}(f, 0)
$$

The conclusion is that

$$
\operatorname{Res}(g, 0)=\left(\frac{1}{2}+3\right) \operatorname{Res}(f, 0)=14
$$

3. Suppose $\gamma_{0}:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ is a differentiable closed curve lying in the punctured plane, and $\gamma_{1}(t)=\gamma_{0}\left(t^{2}\right)$ when $0 \leq t \leq 1$. If the index (winding number) of γ_{0} about the origin is equal to 5 , what is the value of the index of γ_{1} about the origin? Explain how you know.

Solution. The function $t \mapsto t^{2}$ is a homeomorphism (that is, a bicontinuous bijection) from the interval $[0,1]$ onto $[0,1]$. Accordingly, the functions γ_{0} and γ_{1} are simply different parametrizations of the same geometric curve. Therefore γ_{0} and γ_{1} had better have the same winding number about the origin. There are multiple ways to confirm this intuition.
Method 1 The winding number can be expressed as an integral as follows:

$$
\begin{aligned}
\operatorname{Ind}\left(\gamma_{0}, 0\right) & =\frac{1}{2 \pi i} \int_{\gamma_{0}} \frac{1}{z} d z=\frac{1}{2 \pi i} \int_{0}^{1} \frac{1}{\gamma_{0}(t)} \gamma_{0}^{\prime}(t) d t \\
& \stackrel{t=s^{2}}{=} \frac{1}{2 \pi i} \int_{0}^{1} \frac{1}{\gamma_{0}\left(s^{2}\right)} \gamma_{0}^{\prime}\left(s^{2}\right) 2 s d s=\frac{1}{2 \pi i} \int_{0}^{1} \frac{1}{\gamma_{1}(s)} \gamma_{1}^{\prime}(s) d s \\
& =\frac{1}{2 \pi i} \int_{\gamma_{1}} \frac{1}{z} d z=\operatorname{Ind}\left(\gamma_{1}, 0\right) .
\end{aligned}
$$

Examination 2

Method 2 Define a function Γ of two variables as follows:

$$
\Gamma(s, t)=\gamma_{0}\left(s t+(1-s) t^{2}\right) .
$$

If $0 \leq s \leq 1$ and $0 \leq t \leq 1$, then $0 \leq s t+(1-s) t^{2} \leq s+(1-s)=1$, so Γ is well defined on $[0,1] \times[0,1]$. Obtained by composing continuous functions, the function Γ is continuous. Evidently $\Gamma(0, t)=\gamma_{0}\left(t^{2}\right)=\gamma_{1}(t)$, and $\Gamma(1, t)=\gamma_{0}(t)$. Moreover $\Gamma(s, 0)=\gamma_{0}(0)=\gamma_{0}(1)=\Gamma(s, 1)$, so for each fixed value of s, the function sending t to $\Gamma(s, t)$ represents a closed curve. The range of Γ is identical to the range of γ_{0}.
In summary, the function Γ is a homotopy between the two closed curves γ_{1} and γ_{0} in the region $\mathbb{C} \backslash\{0\}$. The winding number is a homotopy invariant, so γ_{0} and γ_{1} have the same winding number about the origin.

Method 3 By Lemma 4.6 on page 57 of the textbook, there is a continuous function θ such that $\gamma_{0}(t)=\left|\gamma_{0}(t)\right| e^{i \theta(t)}$, and $\operatorname{Ind}\left(\gamma_{0}, 0\right)=\frac{1}{2 \pi}(\theta(1)-\theta(0))$. Replace t by t^{2} to deduce that $\gamma_{1}(t)=\left|\gamma_{1}(t)\right| e^{i \theta\left(t^{2}\right)}$. Accordingly,

$$
\operatorname{Ind}\left(\gamma_{1}, 0\right)=\frac{1}{2 \pi}\left(\left.\theta\left(t^{2}\right)\right|_{t=1}-\left.\theta\left(t^{2}\right)\right|_{t=0}\right)=\frac{1}{2 \pi}(\theta(1)-\theta(0))=\operatorname{Ind}\left(\gamma_{0}, 0\right)
$$

4. Find the maximum value of $\left|i+z^{2}\right|$ when $|z| \leq 2$.

Solution.

Method 1 By the triangle inequality, $\left|i+z^{2}\right| \leq|i|+\left|z^{2}\right| \leq 1+2^{2}$ when $|z| \leq 2$. On the other hand, this upper bound 5 is attained when $z=2 e^{i \pi / 4}$. Therefore the maximum value is 5 .

Method 2 The function sending z to z^{2} maps the disk of radius 2 onto the disk of radius 4 . Adding i translates this disk of radius 4 one unit upward in the plane. The point in the translated disk at greatest distance from the origin evidently is the highest point on the imaginary axis, the point $5 i$. Therefore the maximum value of $\left|i+z^{2}\right|$ is 5 .

Method 3 By the maximum principle, the maximum occurs on the boundary of the disk. Therefore the problem reduces to maximizing $\left|i+4 e^{2 i \theta}\right|$ when θ varies from 0 to 2π. In other words, the goal is to maximize

$$
\sqrt{(4 \cos (2 \theta))^{2}+(1+4 \sin (2 \theta))^{2}}
$$

Examination 2

which simplifies to $\sqrt{17+8 \sin (2 \theta)}$. Evidently the maximum occurs when $\sin (2 \theta)=1$, and the value of the maximum is $\sqrt{17+8}$, or 5 .
5. Prove that $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{2 \sqrt{2}}$.
(This integral can-in principle-be evaluated by using techniques of real calculus, but you are more likely to be successful by applying the residue theorem.)

Solution.

Method 1 Integrate $\frac{1}{1+z^{4}}$ over the contour in the (closed) first quadrant that starts at 0 , travels along the real axis to a value R greater than 1 , follows the circle of radius R to the point $R i$, and travels down the imaginary axis back to 0 . By the residue theorem, this integral equals $2 \pi i$ times the residue of $\frac{1}{1+z^{4}}$ at the simple pole where $z=e^{\pi i / 4}$. In other words, this integral equals

$$
2 \pi i \cdot \frac{1}{4 e^{3 \pi i / 4}}, \quad \text { or } \quad \frac{\pi}{2 e^{\pi i / 4}} .
$$

The part of the integral along the real axis equals $\int_{0}^{R} \frac{1}{1+x^{4}} d x$, and the part of the integral along the imaginary axis equals $\int_{R}^{0} \frac{1}{1+y^{4}} i d y$, or $-i \int_{0}^{R} \frac{1}{1+y^{4}} d y$. On the circular arc, where $z=R e^{i \theta}$, the modulus of the integrand is at most $\frac{1}{R^{4}-1}$. Since the length of the circular arc is $\pi R / 2$, the integral over the circular arc is $O\left(1 / R^{3}\right)$ as $R \rightarrow \infty$.
In summary, the residue theorem implies that

$$
\frac{\pi}{2 e^{\pi i / 4}}=(1-i) \int_{0}^{R} \frac{1}{1+x^{4}} d x+O\left(1 / R^{3}\right)
$$

Taking the limit as $R \rightarrow \infty$ and dividing by $1-i$ shows that

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{2 e^{\pi i / 4}(1-i)}=\frac{\pi}{2 \sqrt{2}}
$$

as required.
Method 2 By symmetry, $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x$. Consider the integral of $\frac{1 / 2}{1+z^{4}}$ over the contour that travels along the real axis from $-R$ to R

Examination 2

(where $R>1$) and then follows the circle of radius R in the upper halfplane from R to $-R$. For the same reason as in Method 1 , the integral over the semi-circle is $O\left(1 / R^{3}\right)$. Therefore the limit as $R \rightarrow \infty$ of the integral of $\frac{1 / 2}{1+z^{4}}$ over the closed contour equals the value of the integral stated in the problem.
By the residue theorem, this value equals $2 \pi i$ times the sum of the residues of $\frac{1 / 2}{1+z^{4}}$ at the two (simple) poles in the upper half-plane, where $z=e^{\pi i / 4}$ and $z=e^{3 \pi i / 4}$. Accordingly, the value of $\int_{0}^{\infty} \frac{1}{1+x^{4}} d x$ equals

$$
2 \pi i\left(\frac{1 / 2}{4\left(e^{\pi i / 4}\right)^{3}}+\frac{1 / 2}{4\left(e^{3 \pi i / 4}\right)^{3}}\right) .
$$

This expression simplifies as follows:

$$
\begin{aligned}
\frac{\pi i}{4}\left(\frac{1}{e^{3 \pi i / 4}}+\frac{1}{e^{9 \pi i / 4}}\right) & =\frac{\pi i}{4}\left(e^{-3 \pi i / 4}+e^{-\pi i / 4}\right) \\
& =\frac{\pi}{4}\left(e^{-\pi i / 4}+e^{\pi i / 4}\right) \\
& =\frac{\pi}{4}(2 \cos (\pi / 4)) \\
& =\frac{\pi}{2 \sqrt{2}} .
\end{aligned}
$$

6. Let V denote an open subset of \mathbb{C}, let γ denote a differentiable simple closed curve that lies in V, and let f denote a holomorphic function in V. Answer any two of the following three questions.
(a) What additional property of γ is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every f ?

Solution. A necessary and sufficient condition is that $\operatorname{Ind}(\gamma, w)=0$ for every point w in the complement of V. See Theorem 4.10 (the homology version of Cauchy's theorem) and the subsequent discussion on page 62 of the textbook.
Since γ is simple, the curve γ bounds a Jordan region, whence γ is homologous to zero if and only if γ is homotopic to a constant curve. Therefore you could also say-under the special hypotheses in force in this problem-that a necessary and sufficient condition is for γ to be homotopic in V to a constant curve.
(b) What additional property of f is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every γ ?

Solution. This question is answered by Theorem 4.0 on page 52 of the textbook: the necessary and sufficient condition is the existence of a holomorphic anti-derivative of f in V.
(c) What additional property of V is necessary and sufficient to guarantee that $\int_{\gamma} f(z) d z=0$ for every f and every γ ?

Solution. If V is simply connected, then $\int_{\gamma} f(z) d z=0$ for every f and every γ by Theorem 4.14. The validity of the converse is not made explicit in the textbook until Chapter 11, but the reason is easy to state intuitively. If V fails to be simply connected, then there is a hole in V. Draw a simple closed counterclockwise curve γ around the hole, pick a point w in the hole, and observe that $\int_{\gamma} \frac{1}{z-w} d z=2 \pi i \neq 0$.

