Math 617 Theory of Functions of a Complex Variable **Examination 2**

1. Suppose f is a holomorphic function in the right-hand half-plane such that f'(z) = 1/z when Re(z) > 0, and f(1) = i. Find the value of f(1 + i) in the form a + bi.

Solution. One function whose derivative equals 1/z is the principal branch of the logarithm. Two functions having the same derivative (on a connected open set) differ by a constant, so there is some complex number *c* such that $f(z) = c + \log(z)$. Since f(1) = i, and $\log(1) = 0$, the constant *c* is equal to *i*. Then $f(1+i) = i + \log(1+i) = i + \ln(\sqrt{2}) + \frac{\pi}{4}i = \frac{1}{2}\ln 2 + (1 + \frac{\pi}{4})i$.

2. Suppose f has an isolated singularity at 0, and the residue of f at 0 is equal to 4. Suppose g(z) = f(2z) + 3f(z) for all z in a punctured neighborhood of 0. Find the residue of g at 0.

Solution.

Method 1 By hypothesis, there are coefficient sequences (a_n) and (b_n) such that the Laurent series for f has the following form:

$$\sum_{n=-\infty}^{-2} a_n z^n + \frac{4}{z} + \sum_{n=0}^{\infty} b_n z^n.$$

The transformation $z \mapsto 2z$ (in the domain) and the transformation $w \mapsto 3w$ (in the range) map each monomial z^n to a multiple of the same monomial, so there are coefficient sequences (\tilde{a}_n) and (\tilde{b}_n) such that the Laurent series of g has the form

$$\sum_{n=-\infty}^{-2}\widetilde{a}_n z^n + \frac{4}{2z} + 3 \cdot \frac{4}{z} + \sum_{n=0}^{\infty}\widetilde{b}_n z^n.$$

[Explicit values for the coefficients are easy to find: namely, $\tilde{a}_n = (2^n + 3)a_n$, and $\tilde{b}_n = (2^n + 3)b_n$.] Therefore the residue of g at 0 equals $\frac{4}{2} + 3 \cdot 4$, or 14.

Method 2 There is a positive radius *r* such that *f* is holomorphic at least in the punctured disk of radius 3r centered at 0. The residue of *f* at 0 equals $(2\pi i)^{-1}$ times the integral of *f* around an arbitrary counterclockwise circle centered at 0 of radius less than 3r, so

$$\operatorname{Res}(f,0) = \frac{1}{2\pi i} \oint_{|z|=r} f(z) \, dz = \frac{1}{2\pi i} \oint_{|z|=2r} f(z) \, dz.$$

November 6, 2014

Similarly,

Math 617

$$\operatorname{Res}(g,0) = \frac{1}{2\pi i} \oint_{|z|=r} g(z) \, dz = \frac{1}{2\pi i} \oint_{|z|=r} (f(2z) + 3f(z)) \, dz$$
$$= \frac{1}{2\pi i} \oint_{|z|=r} f(2z) \, dz + 3\operatorname{Res}(f,0).$$

The remaining integral can be computed by replacing 2z with a new variable w as follows:

$$\frac{1}{2\pi i} \oint_{|z|=r} f(2z) \, dz = \frac{1}{2\pi i} \oint_{|w|=2r} f(w) \, \frac{dw}{2} = \frac{1}{2} \operatorname{Res}(f, 0).$$

The conclusion is that

$$\operatorname{Res}(g,0) = \left(\frac{1}{2} + 3\right) \operatorname{Res}(f,0) = 14.$$

3. Suppose $\gamma_0 : [0, 1] \to \mathbb{C} \setminus \{0\}$ is a differentiable closed curve lying in the punctured plane, and $\gamma_1(t) = \gamma_0(t^2)$ when $0 \le t \le 1$. If the index (winding number) of γ_0 about the origin is equal to 5, what is the value of the index of γ_1 about the origin? Explain how you know.

Solution. The function $t \mapsto t^2$ is a homeomorphism (that is, a bicontinuous bijection) from the interval [0, 1] onto [0, 1]. Accordingly, the functions γ_0 and γ_1 are simply different parametrizations of the same geometric curve. Therefore γ_0 and γ_1 had better have the same winding number about the origin. There are multiple ways to confirm this intuition.

Method 1 The winding number can be expressed as an integral as follows:

$$\operatorname{Ind}(\gamma_{0}, 0) = \frac{1}{2\pi i} \int_{\gamma_{0}} \frac{1}{z} dz = \frac{1}{2\pi i} \int_{0}^{1} \frac{1}{\gamma_{0}(t)} \gamma_{0}'(t) dt$$
$$\stackrel{t=s^{2}}{=} \frac{1}{2\pi i} \int_{0}^{1} \frac{1}{\gamma_{0}(s^{2})} \gamma_{0}'(s^{2}) 2s \, ds = \frac{1}{2\pi i} \int_{0}^{1} \frac{1}{\gamma_{1}(s)} \gamma_{1}'(s) \, ds$$
$$= \frac{1}{2\pi i} \int_{\gamma_{1}} \frac{1}{z} \, dz = \operatorname{Ind}(\gamma_{1}, 0).$$

Method 2 Define a function Γ of two variables as follows:

$$\Gamma(s,t) = \gamma_0(st + (1-s)t^2).$$

If $0 \le s \le 1$ and $0 \le t \le 1$, then $0 \le st + (1 - s)t^2 \le s + (1 - s) = 1$, so Γ is well defined on $[0, 1] \times [0, 1]$. Obtained by composing continuous functions, the function Γ is continuous. Evidently $\Gamma(0, t) = \gamma_0(t^2) = \gamma_1(t)$, and $\Gamma(1, t) = \gamma_0(t)$. Moreover $\Gamma(s, 0) = \gamma_0(0) = \gamma_0(1) = \Gamma(s, 1)$, so for each fixed value of *s*, the function sending *t* to $\Gamma(s, t)$ represents a closed curve. The range of Γ is identical to the range of γ_0 .

In summary, the function Γ is a homotopy between the two closed curves γ_1 and γ_0 in the region $\mathbb{C} \setminus \{0\}$. The winding number is a homotopy invariant, so γ_0 and γ_1 have the same winding number about the origin.

Method 3 By Lemma 4.6 on page 57 of the textbook, there is a continuous function θ such that $\gamma_0(t) = |\gamma_0(t)|e^{i\theta(t)}$, and $\operatorname{Ind}(\gamma_0, 0) = \frac{1}{2\pi}(\theta(1) - \theta(0))$. Replace *t* by t^2 to deduce that $\gamma_1(t) = |\gamma_1(t)|e^{i\theta(t^2)}$. Accordingly,

$$\operatorname{Ind}(\gamma_1, 0) = \frac{1}{2\pi} \left(\theta(t^2) \Big|_{t=1} - \theta(t^2) \Big|_{t=0} \right) = \frac{1}{2\pi} \left(\theta(1) - \theta(0) \right) = \operatorname{Ind}(\gamma_0, 0).$$

4. Find the maximum value of $|i + z^2|$ when $|z| \le 2$.

Solution.

Method 1 By the triangle inequality, $|i + z^2| \le |i| + |z^2| \le 1 + 2^2$ when $|z| \le 2$. On the other hand, this upper bound 5 is attained when $z = 2e^{i\pi/4}$. Therefore the maximum value is 5.

Method 2 The function sending z to z^2 maps the disk of radius 2 onto the disk of radius 4. Adding *i* translates this disk of radius 4 one unit upward in the plane. The point in the translated disk at greatest distance from the origin evidently is the highest point on the imaginary axis, the point 5*i*. Therefore the maximum value of $|i + z^2|$ is 5.

Method 3 By the maximum principle, the maximum occurs on the boundary of the disk. Therefore the problem reduces to maximizing $|i + 4e^{2i\theta}|$ when θ varies from 0 to 2π . In other words, the goal is to maximize

 $\sqrt{(4\cos(2\theta))^2 + (1 + 4\sin(2\theta))^2},$

which simplifies to $\sqrt{17 + 8\sin(2\theta)}$. Evidently the maximum occurs when $\sin(2\theta) = 1$, and the value of the maximum is $\sqrt{17 + 8}$, or 5.

5. Prove that $\int_0^\infty \frac{1}{1+x^4} \, dx = \frac{\pi}{2\sqrt{2}}$.

(This integral can—in principle—be evaluated by using techniques of real calculus, but you are more likely to be successful by applying the residue theorem.)

Solution.

Method 1 Integrate $\frac{1}{1+z^4}$ over the contour in the (closed) first quadrant that starts at 0, travels along the real axis to a value *R* greater than 1, follows the circle of radius *R* to the point *Ri*, and travels down the imaginary axis back to 0. By the residue theorem, this integral equals $2\pi i$ times the residue of $\frac{1}{1+z^4}$ at the simple pole where $z = e^{\pi i/4}$. In other words, this integral equals

$$2\pi i \cdot \frac{1}{4e^{3\pi i/4}}$$
, or $\frac{\pi}{2e^{\pi i/4}}$.

The part of the integral along the real axis equals $\int_0^R \frac{1}{1+x^4} dx$, and the part of the integral along the imaginary axis equals $\int_R^0 \frac{1}{1+y^4} i dy$, or $-i \int_0^R \frac{1}{1+y^4} dy$. On the circular arc, where $z = Re^{i\theta}$, the modulus of the integrand is at most $\frac{1}{R^4-1}$. Since the length of the circular arc is $\pi R/2$, the integral over the circular arc is $O(1/R^3)$ as $R \to \infty$.

In summary, the residue theorem implies that

$$\frac{\pi}{2e^{\pi i/4}} = (1-i) \int_0^R \frac{1}{1+x^4} \, dx + O(1/R^3).$$

Taking the limit as $R \to \infty$ and dividing by 1 - i shows that

$$\int_0^\infty \frac{1}{1+x^4} \, dx = \frac{\pi}{2e^{\pi i/4}(1-i)} = \frac{\pi}{2\sqrt{2}},$$

as required.

Method 2 By symmetry, $\int_0^\infty \frac{1}{1+x^4} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{1+x^4} dx$. Consider the integral of $\frac{1/2}{1+x^4}$ over the contour that travels along the real axis from -R to R

(where R > 1) and then follows the circle of radius R in the upper halfplane from R to -R. For the same reason as in Method 1, the integral over the semi-circle is $O(1/R^3)$. Therefore the limit as $R \to \infty$ of the integral of $\frac{1/2}{1+z^4}$ over the closed contour equals the value of the integral stated in the problem.

By the residue theorem, this value equals $2\pi i$ times the sum of the residues of $\frac{1/2}{1+z^4}$ at the two (simple) poles in the upper half-plane, where $z = e^{\pi i/4}$ and $z = e^{3\pi i/4}$. Accordingly, the value of $\int_0^\infty \frac{1}{1+x^4} dx$ equals

$$2\pi i \left(\frac{1/2}{4(e^{\pi i/4})^3} + \frac{1/2}{4(e^{3\pi i/4})^3}\right).$$

This expression simplifies as follows:

$$\frac{\pi i}{4} \left(\frac{1}{e^{3\pi i/4}} + \frac{1}{e^{9\pi i/4}} \right) = \frac{\pi i}{4} \left(e^{-3\pi i/4} + e^{-\pi i/4} \right)$$
$$= \frac{\pi}{4} \left(e^{-\pi i/4} + e^{\pi i/4} \right)$$
$$= \frac{\pi}{4} \left(2\cos(\pi/4) \right)$$
$$= \frac{\pi}{2\sqrt{2}}.$$

- 6. Let V denote an open subset of \mathbb{C} , let γ denote a differentiable simple closed curve that lies in V, and let f denote a holomorphic function in V. Answer any two of the following three questions.
 - (a) What additional property of γ is necessary and sufficient to guarantee that $\int_{\gamma} f(z) dz = 0$ for every *f*?

Solution. A necessary and sufficient condition is that $Ind(\gamma, w) = 0$ for every point *w* in the complement of *V*. See Theorem 4.10 (the homology version of Cauchy's theorem) and the subsequent discussion on page 62 of the textbook.

Since γ is simple, the curve γ bounds a Jordan region, whence γ is homologous to zero if and only if γ is homotopic to a constant curve. Therefore you could also say—under the special hypotheses in force in this problem—that a necessary and sufficient condition is for γ to be homotopic in V to a constant curve.

(b) What additional property of f is necessary and sufficient to guarantee that $\int_{\gamma} f(z) dz = 0$ for every γ ?

Solution. This question is answered by Theorem 4.0 on page 52 of the textbook: the necessary and sufficient condition is the existence of a holomorphic anti-derivative of f in V.

(c) What additional property of V is necessary and sufficient to guarantee that $\int_{Y} f(z) dz = 0$ for every f and every γ ?

Solution. If *V* is simply connected, then $\int_{\gamma} f(z) dz = 0$ for every *f* and every γ by Theorem 4.14. The validity of the converse is not made explicit in the textbook until Chapter 11, but the reason is easy to state intuitively. If *V* fails to be simply connected, then there is a hole in *V*. Draw a simple closed counterclockwise curve γ around the hole, pick a point *w* in the hole, and observe that $\int_{\gamma} \frac{1}{z-w} dz = 2\pi i \neq 0$.

Fall 2014