
Math 617 Theory of Functions of a Complex Variable
Examination 2

Fall 2014

1. Suppose f is a holomorphic function in the right-hand half-plane such that
f ′(z) = 1∕z when Re(z) > 0, and f (1) = i. Find the value of f (1 + i) in
the form a + bi.

Solution. One function whose derivative equals 1∕z is the principal branch
of the logarithm. Two functions having the same derivative (on a connected
open set) differ by a constant, so there is some complex number c such that
f (z) = c + log(z). Since f (1) = i, and log(1) = 0, the constant c is equal
to i. Then f (1 + i) = i+ log(1 + i) = i+ ln

(

√

2
)

+ �
4
i = 1

2
ln 2 + (1 + �

4
)i.

2. Suppose f has an isolated singularity at 0, and the residue of f at 0 is equal
to 4. Suppose g(z) = f (2z) + 3f (z) for all z in a punctured neighborhood
of 0. Find the residue of g at 0.

Solution.
Method 1 By hypothesis, there are coefficient sequences (an) and (bn) such
that the Laurent series for f has the following form:

−2
∑

n=−∞
anz

n + 4
z
+

∞
∑

n=0
bnz

n.

The transformation z → 2z (in the domain) and the transformationw → 3w
(in the range) map each monomial zn to a multiple of the same monomial,
so there are coefficient sequences (ãn) and (b̃n) such that the Laurent series
of g has the form

−2
∑

n=−∞
ãnz

n + 4
2z
+ 3 ⋅ 4

z
+

∞
∑

n=0
b̃nz

n.

[Explicit values for the coefficients are easy to find: namely, ãn = (2n+3)an,
and b̃n = (2n + 3)bn.] Therefore the residue of g at 0 equals

4
2
+ 3 ⋅ 4, or 14.

Method 2 There is a positive radius r such that f is holomorphic at least
in the punctured disk of radius 3r centered at 0. The residue of f at 0 equals
(2�i)−1 times the integral of f around an arbitrary counterclockwise circle
centered at 0 of radius less than 3r, so

Res(f, 0) = 1
2�i ∮

|z|=r
f (z) dz = 1

2�i ∮
|z|=2r

f (z) dz.
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Similarly,

Res(g, 0) = 1
2�i ∮

|z|=r
g(z) dz = 1

2�i ∮
|z|=r

(f (2z) + 3f (z)) dz

= 1
2�i ∮

|z|=r
f (2z) dz + 3Res(f, 0).

The remaining integral can be computed by replacing 2z with a new vari-
able w as follows:

1
2�i ∮

|z|=r
f (2z) dz = 1

2�i ∮
|w|=2r

f (w) dw
2
= 1
2
Res(f, 0).

The conclusion is that

Res(g, 0) =
(1
2
+ 3

)

Res(f, 0) = 14.

3. Suppose 0∶ [0, 1] → ℂ ⧵ {0} is a differentiable closed curve lying in the
punctured plane, and 1(t) = 0(t2) when 0 ≤ t ≤ 1. If the index (winding
number) of 0 about the origin is equal to 5, what is the value of the index
of 1 about the origin? Explain how you know.

Solution. The function t → t2 is a homeomorphism (that is, a bicontinuous
bijection) from the interval [0, 1] onto [0, 1]. Accordingly, the functions 0
and 1 are simply different parametrizations of the same geometric curve.
Therefore 0 and 1 had better have the same winding number about the
origin. There are multiple ways to confirm this intuition.
Method 1 The winding number can be expressed as an integral as follows:

Ind(0, 0) =
1
2�i ∫0

1
z
dz = 1

2�i ∫

1

0

1
0(t)

 ′0(t) dt

t=s2
= 1
2�i ∫

1

0

1
0(s2)

 ′0(s
2) 2s ds = 1

2�i ∫

1

0

1
1(s)

 ′1(s) ds

= 1
2�i ∫1

1
z
dz = Ind(1, 0).
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Method 2 Define a function Γ of two variables as follows:

Γ(s, t) = 0(st + (1 − s)t2).

If 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, then 0 ≤ st + (1 − s)t2 ≤ s + (1 − s) = 1,
so Γ is well defined on [0, 1] × [0, 1]. Obtained by composing continuous
functions, the function Γ is continuous. Evidently Γ(0, t) = 0(t2) = 1(t),
and Γ(1, t) = 0(t). Moreover Γ(s, 0) = 0(0) = 0(1) = Γ(s, 1), so for each
fixed value of s, the function sending t to Γ(s, t) represents a closed curve.
The range of Γ is identical to the range of 0.
In summary, the function Γ is a homotopy between the two closed curves 1
and 0 in the region ℂ ⧵ {0}. The winding number is a homotopy invariant,
so 0 and 1 have the same winding number about the origin.

Method 3 By Lemma 4.6 on page 57 of the textbook, there is a continuous
function � such that 0(t) = |0(t)|ei�(t), and Ind(0, 0) =

1
2�
(�(1) − �(0)).

Replace t by t2 to deduce that 1(t) = |1(t)|ei�(t
2). Accordingly,

Ind(1, 0) =
1
2�

(

�(t2) ||
|t=1

−�(t2) ||
|t=0

)

= 1
2�
(�(1) − �(0)) = Ind(0, 0).

4. Find the maximum value of |i + z2| when |z| ≤ 2.

Solution.
Method 1 By the triangle inequality, |i + z2| ≤ |i| + |z2| ≤ 1 + 22 when
|z| ≤ 2. On the other hand, this upper bound 5 is attained when z = 2ei�∕4.
Therefore the maximum value is 5.

Method 2 The function sending z to z2 maps the disk of radius 2 onto the
disk of radius 4. Adding i translates this disk of radius 4 one unit upward in
the plane. The point in the translated disk at greatest distance from the origin
evidently is the highest point on the imaginary axis, the point 5i. Therefore
the maximum value of |i + z2| is 5.

Method 3 By the maximum principle, the maximum occurs on the bound-
ary of the disk. Therefore the problem reduces to maximizing |i + 4e2i�|
when � varies from 0 to 2�. In other words, the goal is to maximize

√

(4 cos(2�))2 + (1 + 4 sin(2�))2,
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which simplifies to
√

17 + 8 sin(2�). Evidently the maximum occurs when
sin(2�) = 1, and the value of the maximum is

√

17 + 8, or 5.

5. Prove that ∫

∞

0

1
1 + x4

dx = �

2
√

2
.

(This integral can—in principle—be evaluated by using techniques of real
calculus, but you are more likely to be successful by applying the residue
theorem.)

Solution.
Method 1 Integrate 1

1+z4
over the contour in the (closed) first quadrant that

starts at 0, travels along the real axis to a value R greater than 1, follows the
circle of radius R to the point Ri, and travels down the imaginary axis back
to 0. By the residue theorem, this integral equals 2�i times the residue of
1

1+z4
at the simple pole where z = e�i∕4. In other words, this integral equals

2�i ⋅ 1
4e3�i∕4

, or �
2e�i∕4

.

The part of the integral along the real axis equals ∫ R
0

1
1+x4

dx, and the part of
the integral along the imaginary axis equals ∫ 0

R
1

1+y4
i dy, or −i ∫ R

0
1

1+y4
dy.

On the circular arc, where z = Rei�, the modulus of the integrand is at
most 1

R4−1
. Since the length of the circular arc is �R∕2, the integral over the

circular arc is O(1∕R3) as R→∞.
In summary, the residue theorem implies that

�
2e�i∕4

= (1 − i)∫

R

0

1
1 + x4

dx + O(1∕R3).

Taking the limit as R→∞ and dividing by 1 − i shows that

∫

∞

0

1
1 + x4

dx = �
2e�i∕4(1 − i)

= �

2
√

2
,

as required.

Method 2 By symmetry, ∫ ∞
0

1
1+x4

dx = 1
2
∫ ∞
−∞

1
1+x4

dx. Consider the inte-
gral of 1∕2

1+z4
over the contour that travels along the real axis from −R to R
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(where R > 1) and then follows the circle of radius R in the upper half-
plane from R to −R. For the same reason as in Method 1, the integral over
the semi-circle is O(1∕R3). Therefore the limit as R → ∞ of the integral
of 1∕2

1+z4
over the closed contour equals the value of the integral stated in the

problem.
By the residue theorem, this value equals 2�i times the sum of the residues
of 1∕2

1+z4
at the two (simple) poles in the upper half-plane, where z = e�i∕4 and

z = e3�i∕4. Accordingly, the value of ∫ ∞
0

1
1+x4

dx equals

2�i
(

1∕2
4(e�i∕4)3

+
1∕2

4(e3�i∕4)3

)

.

This expression simplifies as follows:

�i
4

( 1
e3�i∕4

+ 1
e9�i∕4

)

= �i
4
(

e−3�i∕4 + e−�i∕4
)

= �
4
(

e−�i∕4 + e�i∕4
)

= �
4
(2 cos(�∕4))

= �

2
√

2
.

6. Let V denote an open subset ofℂ, let  denote a differentiable simple closed
curve that lies in V , and let f denote a holomorphic function in V . Answer
any two of the following three questions.

(a) What additional property of  is necessary and sufficient to guarantee
that ∫ f (z) dz = 0 for every f?

Solution. A necessary and sufficient condition is that Ind(,w) = 0
for every point w in the complement of V . See Theorem 4.10 (the
homology version of Cauchy’s theorem) and the subsequent discussion
on page 62 of the textbook.
Since  is simple, the curve  bounds a Jordan region, whence  is
homologous to zero if and only if  is homotopic to a constant curve.
Therefore you could also say—under the special hypotheses in force in
this problem—that a necessary and sufficient condition is for  to be
homotopic in V to a constant curve.
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(b) What additional property of f is necessary and sufficient to guarantee
that ∫ f (z) dz = 0 for every ?

Solution. This question is answered by Theorem 4.0 on page 52 of the
textbook: the necessary and sufficient condition is the existence of a
holomorphic anti-derivative of f in V .

(c) What additional property of V is necessary and sufficient to guarantee
that ∫ f (z) dz = 0 for every f and every ?

Solution. If V is simply connected, then ∫ f (z) dz = 0 for every f
and every  by Theorem 4.14. The validity of the converse is not made
explicit in the textbook until Chapter 11, but the reason is easy to state
intuitively. If V fails to be simply connected, then there is a hole in V .
Draw a simple closed counterclockwise curve  around the hole, pick
a point w in the hole, and observe that ∫

1
z−w

dz = 2�i ≠ 0.
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