In this assignment, you will prove Picard’s theorems by applying Montel’s fundamental normality criterion. (The criterion states that a family of holomorphic functions from a connected open set into \(\mathbb{C} \setminus \{0, 1\} \) is normal in the extended sense that the constant function \(\infty \) is an allowed limit.)

Picard’s “little” theorem describes the range of an entire function. The case of a polynomial of positive degree \(n \) is covered by the fundamental theorem of algebra: the polynomial assumes every complex value exactly \(n \) times, counting multiplicity. An entire function that is not a polynomial is called transcendental.

Theorem (Picard’s little theorem). A transcendental entire function assumes every complex value—with one possible exception—infinitely often.

1. The exceptional value—if there is one—might be completely omitted or might be taken a finite number of times.
 a) Give an example of a transcendental entire function that omits the value \(0 \).
 b) Give an example of a transcendental entire function that takes the value \(0 \) exactly five times (counting multiplicity).
 c) Give an example of a transcendental entire function that takes every value infinitely many times.

Theorem (Picard’s great theorem). A holomorphic function takes every value—with one possible exception—infinitely often in every (punctured) neighborhood of an essential singularity.

Thus if \(f \) is holomorphic in a punctured disk, and if the range of \(f \) omits two values, then the singularity cannot be an essential singularity: the singularity can only be a pole or a removable singularity.

2. To prove Picard’s great theorem, consider the contrapositive statement. Suppose that \(f \) is holomorphic in some punctured neighborhood of the origin, and there are two distinct values that \(f \) assumes only a finite number of times. The goal is to show that \(f \) does not have an essential singularity.
 a) Why is there no loss of generality in supposing that the two exceptional values are 0 and 1?
 b) Observe that there is some positive radius \(\delta \) such that \(f \) is holomorphic in the punctured disk \(\{ z \in \mathbb{C} : 0 < |z| < \delta \} \) and does not assume either of the exceptional values in this region.
 c) For each positive integer \(n \), set \(f_n(z) = f(z/n) \). Apply Montel’s fundamental normality criterion to the family \(\{ f_n \} \) on the punctured disk \(\{ z \in \mathbb{C} : 0 < |z| < \delta \} \) to deduce that the singularity at the origin is either a removable singularity or a pole.
3. Deduce Picard’s little theorem as a corollary of Picard’s great theorem, as follows. If $f(z)$ is an entire function, then $f(1/z)$ has an isolated singularity at the origin.

a) Show that if $f(1/z)$ has a removable singularity at the origin, then the entire function $f(z)$ must be constant.

b) Show that if $f(1/z)$ has a pole at the origin, then the entire function $f(z)$ must be a polynomial.

Suggestion: A generalization of Liouville’s theorem states that if an entire function grows slower than some polynomial, then the function is a polynomial. You can prove this generalization by applying Cauchy’s estimates for derivatives.

c) Conclude that Picard’s little theorem follows from Picard’s great theorem.

(The catchphrase is that a transcendental entire function “has an essential singularity at infinity.”)