

Outline

- Schedules and timelines
- Brief Facts about Texas A&M
- Overview of the department
- Initial Course Scheduling
- Warning about Scams and Frauds

This talk is available at https://www.math.tamu.edu/~bonito/graduate_programs.html

Schedules and Timelines

Actual Orientation Day (to be confirmed)

- August 13: Computer account forms
- Online: Overview of the programs; discussion of course scheduling, See this presentation
- Online: TA assignments, David Manuel; By email in August
- Online: Computer systems, See David Manuel Presentation (to be communicated soon)
- Online: Graduate Student Organizers and Representatives
 - GSO, See Flyer
 - AMS Student Chapter, See Flyer
 - SIAM Student Chapter, See Flyer
 - AWM Student Chapter, See Flyer
- Online: Course scheduling, Contact the mentor you have been associated to (p. 16)
- August 13: payroll processing

Department Account and Email

- Students should have a department account by the end of the day.
- Students should have a university email. You can request it in Howdy using your NetId

https://gateway.tamu.edu

To the extent possible, students should check this account at least once each day while in the program.

Do not Forget

International student check-in

iss.tamu.edu/Prospective-Students/Check-In

• University level graduate student orientation (to be confirmed)

ogaps.tamu.edu/New-Current-Students/New-Graduate-Student-Orientation

Schedule for the Semester

- Tuesday, Aug. 18: Last day to register for Fall 2020 classes without a penalty
- Friday, Aug. 14: All Fall semester bills due by 5:00 p.m.
- Wednesday, Aug. 19: First day of classes
- Wednesday, Aug. 29: First meeting of the First Year Graduate Student Seminar (FYGSS), 5:30 p.m. 6:30 p.m. in TBA
- Tuesday, Aug. 25: Last day for drop / add
- Tuesday, Nov. 24: Last day of classes
- TBA: English Language Proficiency Exam (ELPE)

testing.tamu.edu/Exams/ELPE

Brief Facts about Texas A&M

About Texas A&M

- Founded in 1876
- A&M originally referred to "agriculture and mechanics," but in 1963 this interpretation was dropped
- Among the 5 largest universities in the US, public and private
- About 70,000 students (College Station campus), including about 15,000 graduate and professional students
- 1st in nation for most graduates serving as CEOs of Fortune 500 companies

- 3 Nobel Prize winner
- 6 National Academy of Sciences Members
- \$922 million (FY2018) in research expenditures
- In 2012 Texas A&M joined the Southeastern Conference (SEC)
- If you yell "Howdy" anywhere on campus, everyone within earshot will stop what they're doing and yell it back

Campus Map

An interactive campus map is available at the following site

aggiemap.tamu.edu

Student ID

Students can apply for a Student ID on-line at the following site

myaggiecard.tamu.edu

• Cards can be picked up in the Aggie Card Office in Student Business Services, General Services Complex (GSC), Suite 2801.

Overview of the Department

People

- 76 Professors
- 29 Academic Professional Track faculty
- 20 Visiting assistant professor and Visitors
- ~ 110 PhD students
- ~ 15 Ms students
- ~ FF Distance students

The department graduates about 16 PhD students, 10 campus MS students, and 15 distance MS students each year.

Research Groups (PhD students per group)

- Algebra & Combinatorics (25)
- Applied Math & Interdisciplinary (11)
- Approximation Theory (1)
- Functional Analysis (14)
- Geometry & Topology (13)

- Groups & Dynamics (6)
- Number Theory (10)
- Numerical Analysis & Scientific Computation (15)
- PDE & Math Physics (8)
- Probability (7)
- Several Complex Variables (6)

Active Seminars

- Algebra and Combinatorics
- Algebraic Geometry
- Banach Spaces
- First Year Graduate Students
- Free Probability
- Geometry
- Graduate Student Organization
- Groups and Dynamics
- Inverse Problems and Machine Learning
- Linear Analysis

- Linear Analysis
- Mathematical Physics and Harmonic Analysis
- Noncommuntative Geometry
- Nonlinear Partial Differential Equations
- Number Theory
- Numerical Analysis
- Probability
- Many Working seminars
- Many Colloquium series

Initial Course Scheduling

Advisors

- MS students
 - Andrea Bonito
- PhD students
 - Algebra / Topology / Geometry, Igor Zelenko
 - Number Theory / Groups and Dynamics, Riad Masri
 - Analysis, Thomas Schlumprecht
 - PDE / Applied / Numerical Analysis / Appx, Andrea Bonito

Ms Schedules

- For MS students, course schedules are determined by the MS track chosen
 - Traditional
 - Teaching
 - Computational
 - Industrial
 - Math Biology
- Requirements for this tracks

PhD Schedules

For PhD students, first-year schedules are mostly determined by the qualifying-exam and breadth requirements. These are characterized by four broad categories

- Algebra, discrete math, number theory
- Real and complex analysis
- Differential geometry, topology
- Applied and numerical analysis

Qualifying Exam Requirements

- Students must pass two qualifying exams from two different areas by the end of their second year in the program.
- Each qualifying exam is based on a two-semester sequence.
- The five options are
 - Algebra (M653-M654)
 - Applied and Numerical Analysis (M617-M618)
 - Complex Analysis (M617-M618)
 - Real Analysis (M607-M608)
 - Differential Geometry and Topology (M636-M622)

Breadth Requirements

- As a breadth requirement, students must take at least one approved course from the two areas they do not take qualifying exams in.
- Students who have already completed introductory level courses in a breadth area should take a more advanced course in the area.

Example 1: Applied Math

- Any student in applied math will take the applied/numerical analysis qualifying exam and this is based on two courses
 - M641 Analysis for Applications I
 - M610 Numerical Partial Differential Equations
- Many students in applied math will take the analysis qualifying exam, which is based on
 - M607 Real Variables I
 - M608 Real Variables II

Example 1: Applied Math

- If a student takes the applied/numerical and analysis qualifying exams, he/she will need to fulfill breadth requirements in two areas
 - Algebra, discrete math, number theory
 - Differential geometry, topology
- Some options for algebra, discrete math, number theory
 - M653: Algebra I
 - M626: Analytic number theory
- Some options for differential geometry, topology
 - M622: Differential geometry I
 - M636: Topology I

Example 1: Applied Math

Here is an example first-year schedule:

- Fall 2020
 - M607, Real Variables I
 - M641, Analysis for Applications I
 - M653, Algebra I
- Spring 2021
 - M608, Real Variables II
 - M610, Numerical PDE
 - M642, Analysis for Applications II

This student would be prepared to take two qualifying exams and would only have one breadth requirement left for the second year.

Example 2: Algebraic Geometry

- Any student studying algebraic geometry will take the qualifying exam in algebra, which is based on the courses
 - M653-M654: Algebra I-II
- Many students in applied math will take the differential geometry and topology qualifying exam, which is based on
 - M622 Differential Geometry I
 - M636 Topology I

Example 2: Algebraic Geometry

- If a student takes the algebra and differential geometry / topology qualifying exams, he/she will need to fulfill breadth requirements in two areas
 - Real or complex analysis
 - Applied / Numerical Analysis
- Some options for real and complex analysis
 - M607: Real variables I
 - M617: Theory of functions of complex variables
- Some options for applied and numerical analysis
 - M609: Numerical analysis
 - M610: Numerical methods for partial differential equations
 - M641: Analysis for applications

Example 2: Algebraic Geometry

Here is an example first-year schedule:

- Fall 2020
 - M607, Real Variables I
 - M636, Topology I
 - M653, Algebra I
- Spring 2021
 - M622, Differential Geometry
 - M648, Computational algebraic geometry
 - M654, Algebra II

This student would be prepared to take two qualifying exams and would only have one breadth requirement left for the second year.

A registration tutorial is available at

http://registrar.tamu.edu/Courses,-Registration,-Scheduling/Registration-Enrollment-Information/Registration-Tutorials

Scams and Frauds

Targets

- Incoming students, and especially incoming international students, are often targeted by scams and frauds.
- These are typically initiated by phone or email, and can involve
 - Passport and visa status
 - Credit cards
 - Banking
 - US Taxes
 - Computer accounts
 - Etc.

How

- Individuals perpetrating such activities can be highly aggressive and threatening.
- Some common rules of thumb
 - No reputable agency will call you and ask for information such as a credit card number or social security number, so if this happens, it's a scam
 - Double check links in emails you receive to ensure they're valid; the safest thing is to look up the agency's contact information and re-type it.
- If you suspect you are being targeted, please contact me immediately.